c++调用pb模型,使用tensorflow编译库
时间: 2024-06-11 07:10:28 浏览: 103
在使用TensorFlow编译库之前,需要先安装TensorFlow和Protocol Buffers(PB)库。
1. 安装TensorFlow
可以通过以下命令来安装TensorFlow:
```
pip install tensorflow
```
2. 安装Protocol Buffers(PB)库
可以通过以下命令来安装PB库:
```
pip install protobuf
```
3. 编译PB模型
在编译PB模型之前,需要先将模型转换为PB格式。可以使用TensorFlow提供的freeze_graph.py脚本来将模型转换为PB格式:
```
python freeze_graph.py --input_graph=model.pb --input_checkpoint=model.ckpt --output_graph=frozen_model.pb --output_node_names=output_node_name
```
其中,model.pb是模型的GraphDef文件,model.ckpt是模型的checkpoint文件,output_node_name是模型输出节点的名称。
接下来,使用TensorFlow提供的tensorflow.python.compiler.tensorrt.convert()函数来编译PB模型:
```
import tensorflow as tf
# 加载PB模型
with tf.gfile.GFile('frozen_model.pb', "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# 编译PB模型
trt_graph = tf.python.compiler.tensorrt.convert(
graph_def,
max_batch_size=1,
maximum_cached_engines=1,
precision_mode="FP16",
minimum_segment_size=3
)
# 保存编译后的模型
with tf.gfile.GFile('trt_model.pb', "wb") as f:
f.write(trt_graph.SerializeToString())
```
其中,max_batch_size表示最大批处理大小,precision_mode表示推理精度,minimum_segment_size表示最小分段大小。
经过编译后,可以使用TensorRT来加速模型的推理。
阅读全文