写出基于颜色特征的花朵图像检索系统python代码
时间: 2023-12-20 14:03:17 浏览: 105
以下是一个基于颜色特征的花朵图像检索系统的Python代码示例:
```python
import cv2
import numpy as np
import os
# 读取图像数据库并提取颜色特征
database = {}
for filename in os.listdir('database'):
img = cv2.imread(os.path.join('database', filename))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0,1], None, [180, 256], [0, 180, 0, 256])
hist = cv2.normalize(hist, hist).flatten()
database[filename] = hist
# 读取查询图像并提取颜色特征
query = cv2.imread('query.jpg')
hsv = cv2.cvtColor(query, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0,1], None, [180, 256], [0, 180, 0, 256])
hist = cv2.normalize(hist, hist).flatten()
# 计算查询图像与数据库中所有图像的相似度
results = {}
for filename, hist_db in database.items():
score = cv2.compareHist(hist, hist_db, cv2.HISTCMP_CORREL)
results[filename] = score
# 按相似度从高到低排序输出结果
sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True)
for filename, score in sorted_results:
print(filename, score)
```
这段代码实现了以下功能:
1. 读取图像数据库中的所有图像,并对每个图像提取颜色特征(使用HSV颜色空间和2D直方图表示);
2. 读取查询图像,并对其提取颜色特征;
3. 计算查询图像与数据库中所有图像的相似度,使用相关系数作为相似度度量;
4. 按相似度从高到低排序,输出结果。
注意:这只是一个简单的示例,实际应用中可能需要更加复杂的特征提取和相似度度量方法。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)