写一段用cublas库进行批处理矩阵乘法的代码
时间: 2024-04-09 09:28:12 浏览: 88
以下是使用CUBLAS库进行批处理矩阵乘法的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#define N 3 // 矩阵大小
#define BATCH_SIZE 2 // 批处理大小
void printMatrix(float* matrix, int rows, int cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
printf("%f ", matrix[i * cols + j]);
}
printf("\n");
}
printf("\n");
}
int main() {
cublasHandle_t handle;
cublasCreate(&handle);
float* h_A[BATCH_SIZE]; // 批处理输入矩阵A
float* h_B[BATCH_SIZE]; // 批处理输入矩阵B
float* h_C[BATCH_SIZE]; // 批处理输出矩阵C
float* d_A[BATCH_SIZE]; // GPU上的输入矩阵A
float* d_B[BATCH_SIZE]; // GPU上的输入矩阵B
float* d_C[BATCH_SIZE]; // GPU上的输出矩阵C
// 为批处理矩阵分配内存
for (int i = 0; i < BATCH_SIZE; i++) {
h_A[i] = (float*)malloc(N * N * sizeof(float));
h_B[i] = (float*)malloc(N * N * sizeof(float));
h_C[i] = (float*)malloc(N * N * sizeof(float));
cudaMalloc((void**)&d_A[i], N * N * sizeof(float));
cudaMalloc((void**)&d_B[i], N * N * sizeof(float));
cudaMalloc((void**)&d_C[i], N * N * sizeof(float));
}
// 初始化输入矩阵A和B
for (int i = 0; i < BATCH_SIZE; i++) {
for (int j = 0; j < N * N; j++) {
h_A[i][j] = i + j;
h_B[i][j] = i - j;
}
}
// 将输入矩阵A和B从主机内存复制到GPU内存
for (int i = 0; i < BATCH_SIZE; i++) {
cudaMemcpy(d_A[i], h_A[i], N * N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B[i], h_B[i], N * N * sizeof(float), cudaMemcpyHostToDevice);
}
const float alpha = 1.0f;
const float beta = 0.0f;
// 执行批处理矩阵乘法
cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, (const float**)d_A, N, (const float**)d_B, N, &beta, d_C, N, BATCH_SIZE);
// 将输出矩阵C从GPU内存复制到主机内存
for (int i = 0; i < BATCH_SIZE; i++) {
cudaMemcpy(h_C[i], d_C[i], N * N * sizeof(float), cudaMemcpyDeviceToHost);
}
// 打印输入矩阵A和B
printf("Matrix A:\n");
for (int i = 0; i < BATCH_SIZE; i++) {
printf("Batch %d:\n", i);
printMatrix(h_A[i], N, N);
}
printf("Matrix B:\n");
for (int i = 0; i < BATCH_SIZE; i++) {
printf("Batch %d:\n", i);
printMatrix(h_B[i], N, N);
}
// 打印输出矩阵C
printf("Matrix C:\n");
for (int i = 0; i < BATCH_SIZE; i++) {
printf("Batch %d:\n", i);
printMatrix(h_C[i], N, N);
}
// 释放内存
for (int i = 0; i < BATCH_SIZE; i++) {
free(h_A[i]);
free(h_B[i]);
free(h_C[i]);
cudaFree(d_A[i]);
cudaFree(d_B[i]);
cudaFree(d_C[i]);
}
cublasDestroy(handle);
return 0;
}
```
这个示例代码演示了如何使用CUBLAS库进行批处理矩阵乘法。它创建了两个批处理的输入矩阵A和B,并分配了相应的GPU内存。然后,它将输入矩阵从主机内存复制到GPU内存,并使用`cublasSgemmBatched`函数执行批处理矩阵乘法。最后,它将输出矩阵C从GPU内存复制到主机内存,并打印输入矩阵A和B以及输出矩阵C的内容。请确保您已正确安装CUDA和CUBLAS,并将代码与适当的编译器和库进行编译和链接。
阅读全文