使用R语言定义一个基于CNN的孪生网络进行文本相似度比较的代码怎么写
时间: 2024-05-02 11:19:13 浏览: 98
以下是一个基于R语言的CNN孪生网络文本相似度比较的代码示例:
```R
library(keras)
# Define the Siamese Network
input_layer <- layer_input(shape = c(MAX_SEQ_LEN))
embedding_layer <- layer_embedding(input_dim = VOCAB_SIZE, output_dim = EMBEDDING_DIM,
input_length = MAX_SEQ_LEN)(input_layer)
conv_layer <- layer_conv_1d(filters = NUM_FILTERS, kernel_size = FILTER_SIZE,
activation = "relu")(embedding_layer)
pool_layer <- layer_global_max_pooling_1d()(conv_layer)
dropout_layer <- layer_dropout(rate = DROPOUT_RATE)(pool_layer)
output_layer <- layer_dense(units = EMBEDDING_DIM, activation = "sigmoid")(dropout_layer)
siamese_model <- keras_model(input_layer, output_layer)
summary(siamese_model)
# Compile the Siamese Network
siamese_model %>% compile(
optimizer = "adam",
loss = "binary_crossentropy",
metrics = list("accuracy")
)
# Train the Siamese Network
history <- siamese_model %>% fit(
x = list(train_data_a, train_data_b),
y = train_labels,
epochs = NUM_EPOCHS,
batch_size = BATCH_SIZE,
validation_split = VALID_SPLIT,
callbacks = list(early_stopping)
)
# Evaluate the Siamese Network
score <- siamese_model %>% evaluate(
x = list(test_data_a, test_data_b),
y = test_labels,
batch_size = BATCH_SIZE
)
# Make Predictions with the Siamese Network
predictions <- siamese_model %>% predict(
x = list(test_data_a, test_data_b),
batch_size = BATCH_SIZE
)
```
说明:这是一个基于Keras的Siamese CNN文本相似度比较模型,通过输入两个文本序列,经过嵌入层、卷积层、池化层、Dropout层等处理后,输出一个相似度得分。具体的代码解释可以参考相关文档和教程。
阅读全文