python pca降维图可视化
时间: 2023-06-29 15:16:34 浏览: 146
PCA.zip_PCA散点图_Python PCA_python pca 画图_python 图_降维
好的,以下是使用Python进行PCA降维并绘制降维图的示例代码:
``` python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
# 读取csv文件
df = pd.read_csv('your_data.csv')
# 获取数据
data = df.iloc[:, 1:].values
# 标准化数据
data_std = (data - data.mean()) / data.std()
# 执行PCA
pca = PCA(n_components=2)
data_pca = pca.fit_transform(data_std)
# 将降维后的数据存储在新的数据框中
df_pca = pd.DataFrame(data_pca, columns=['PC1', 'PC2'])
# 将降维后的数据与原始数据框合并
df_final = pd.concat([df.iloc[:, 0], df_pca], axis=1)
# 绘制降维图
fig, ax = plt.subplots()
for index, row in df_final.iterrows():
ax.annotate(row[0], (row['PC1'], row['PC2']))
ax.scatter(df_final['PC1'], df_final['PC2'])
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```
在这个示例中,我们使用`pandas`库读取csv文件,并获取除第一列外的所有列作为数据。然后,我们对数据进行标准化,使用PCA将其降维至2维,并将结果存储在一个新的数据框中。最后,我们将降维后的数据与原始数据框合并,并绘制降维图。
在绘制降维图时,我们使用`iterrows()`方法遍历数据框中的每一行,并使用`annotate()`方法在图中标注每个数据点的名称。然后,我们使用`scatter()`方法绘制散点图,并设置x轴和y轴标签。最后,我们使用`show()`方法显示图形。
阅读全文