test_df = data[data["label"].isnull() == True].copy().reset_index(drop=True) train_df = data[~data["label"].isnull() == True].copy().reset_index(drop=True) feature_name = [f for f in data.columns if f not in drop_cols] X_train = train_df[feature_name].reset_index(drop=True) X_test = test_df[feature_name].reset_index(drop=True) y = train_df['label'].reset_index(drop=True)
时间: 2023-06-26 14:09:44 浏览: 78
这段代码的作用是将原始数据集分为训练集和测试集,并获取特征名称和标签。
首先,`data` 是原始数据集。`data["label"].isnull() == True` 会返回一个布尔数组,表示每个数据点的 "label" 是否缺失。`data[data["label"].isnull() == True]` 会根据这个布尔数组筛选出缺失 "label" 的数据点,也就是测试集。`data[~data["label"].isnull() == True]` 则是选择不缺失 "label" 的数据点,也就是训练集。
`reset_index(drop=True)` 用来重新设置索引,把新的数据集索引从 0 开始排列。
`feature_name` 是特征名称列表,其中 `drop_cols` 是需要删除的特征列名列表。`X_train` 和 `X_test` 分别是训练集和测试集的特征数据。`y` 是训练集的标签数据。
相关问题
def LOSO_sequence_generate(data: pd.DataFrame, sub_column: str) -> tuple: train_list = [] test_list = [] subjects = np.unique(data[sub_column]) for subject in subjects: mask = data["Subject"].isin([subject]) train_data = data[~mask].reset_index(drop=True) test_data = data[mask].reset_index(drop=True) train_list.append(train_data) test_list.append(test_data) return train_list, test_list 详细解释该代码
这段代码实现了 Leave-One-Subject-Out (LOSO) 的数据划分,将数据集按照不同的 subject 进行划分,每个 subject 对应一个 train 数据集和一个 test 数据集。
具体解释如下:
1. `data` 是一个 pandas DataFrame,包含所有的数据。
2. `sub_column` 是一个字符串,表示在 DataFrame 中哪一列代表 subject。
3. `np.unique(data[sub_column])` 可以得到所有的 subject,去重后返回一个 numpy 数组。
4. `for subject in subjects:` 遍历每一个 subject。
5. `mask = data["Subject"].isin([subject])` 根据当前的 subject,创建一个 boolean mask,将该 subject 的数据标记为 True,其它 subject 的数据标记为 False。
6. `train_data = data[~mask].reset_index(drop=True)` 根据 mask,将所有不属于当前 subject 的数据提取出来,并且重新设置索引。
7. `test_data = data[mask].reset_index(drop=True)` 根据 mask,将属于当前 subject 的数据提取出来,并且重新设置索引。
8. `train_list.append(train_data)` 将当前 subject 的 train 数据集添加到 train_list 中。
9. `test_list.append(test_data)` 将当前 subject 的 test 数据集添加到 test_list 中。
10. 最后返回 train_list 和 test_list,它们分别是一个列表,包含了所有 subject 对应的 train 和 test 数据集。
test_data = data.drop(train_data.index)
这段代码的作用是从数据集中删除训练集数据,以便在训练模型时使用训练集数据,而在测试模型时使用测试集数据。通常情况下,我们需要将数据集随机分为训练集和测试集,以便评估模型的泛化能力和性能。这行代码假设已经定义了一个名为“train_data”的训练集数据,并使用train_data.index将其从原始数据集中删除,存储为名为“test_data”的新数据集。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)