matlab画曲线图出现阴影区域‘’

时间: 2023-09-26 18:14:24 浏览: 101
如果你想在 MATLAB 中画出一个曲线图,并在曲线下方填充阴影区域,可以使用 `fill` 函数。下面是一个简单的例子: ```matlab x = 0:0.1:2*pi; y = sin(x); plot(x,y,'LineWidth',2); hold on fill([x fliplr(x)],[y zeros(size(y))],'b','FaceAlpha',.1) ``` 这里,我们使用 `plot` 函数绘制了 `y=sin(x)` 的曲线,然后使用 `fill` 函数在曲线下方填充了一个蓝色阴影区域。`fill` 函数的第一个输入参数是一个包含所有顶点坐标的矩阵,这里我们使用了 `x` 和 `y` 的数组。第二个输入参数是一个相同大小的矩阵,用于指定阴影区域的下边界。在这个例子中,我们使用了一个全零的矩阵。第三个输入参数是阴影区域的颜色,这里我们选择了蓝色。最后一个输入参数是 `FaceAlpha`,它指定了阴影区域的透明度。 你可以根据需要调整这些参数来满足你的需求。
相关问题

阴影区域图:绘制两条线,然后在这两条线之间的区域进行阴影处理。-matlab代码

阴影区域图通常用于比较两组数据并在它们之间显示差异或相似度的部分。在MATLAB中,你可以使用`fill_between`函数配合`plot`函数来创建这样的图形。以下是一个简单的示例代码: ```matlab % 定义x轴数据 x = linspace(0, 10, 100); % 替换为你实际需要的数据范围 % 创建两条线的数据 line1 = sin(x); line2 = cos(x); % 绘制两条线 plot(x, line1, 'r', 'LineWidth', 1.5); % 红色线(例如,第一曲线) hold on; % 保持当前绘图状态以便添加更多线条 plot(x, line2, 'b', 'LineWidth', 1.5); % 蓝色线(例如,第二曲线) % 计算并填充阴影区域 fill_between(x, line1, line2, 'FaceColor', 'k', 'AlphaData', 0.3); % 黑色阴影,透明度为30% % 添加网格和标签 xlabel('X轴'); ylabel('Y轴'); title('阴影区域图'); grid on; % 清除hold状态,防止后续绘制干扰 hold off; ``` 这个例子中,黑色区域表示`sin(x)`和`cos(x)`值之间的差异。你可以根据需要调整颜色、透明度和其他属性。如果你想要保存结果到图片文件,可以添加`saveas(gcf, 'shadow_region.png')`。

matlab经过smooth处理后的两条曲线形成的区域添加阴影的代码

在MATLAB中,你可以使用`fill`函数配合`patch`或者`surf`等命令来创建光滑曲线之间的区域,并添加阴影效果。这里是一个基本示例: ```matlab % 首先,假设你有两个经过smooth处理的向量x和y,分别代表x轴和y轴的数据 x = smooth(your_x_data); y = smooth(your_y_data); % 创建一个网格,用于填充区域 [X,Y] = meshgrid(x,y); % 使用meshgrid得到的X和Y值,计算并填充区域 Z = interp2(x,y,ones(size(X)),X,Y); % 假设我们用的是线性插值,如果需要更复杂的插值,可以改用其他函数 % 添加阴影 patch('Faces', X(:), Y(:), Z(:)', 'FaceColor', 'g', 'EdgeColor', 'none'); % 绿色阴影 shading flat; % 设置平面阴影效果 % 可能还需要设置灯光、透明度等参数,具体视需求而定 lighting gouraud; alpha(0.5); % 设置透明度 % 最后显示图像 view(3); % 三维视角 axis equal; % 等比例坐标轴 ``` 注意,这只是一个基础示例,实际操作中可能需要调整颜色、阴影深度、光照方向等参数。另外,`interp2`函数可以根据你的数据特性选择不同的插值方法。
阅读全文

相关推荐

zip
1 各类智能优化算法改进及应用 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 2 机器学习和深度学习方面 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 2.图像处理方面 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 3 路径规划方面 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 4 无人机应用方面 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 、无人机安全通信轨迹在线优化 5 无线传感器定位及布局方面 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 6 信号处理方面 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 7 电力系统方面 微电网优化、无功优化、配电网重构、储能配置 8 元胞自动机方面 交通流 人群疏散 病毒扩散 晶体生长 9 雷达方面 卡尔曼滤波跟踪、航迹关联、航迹融合

最新推荐

recommend-type

opencv_python-4.1.0.25-cp37-cp37m-linux_armv7l.whl

opencv_python-4.1.0.25-cp37-cp37m-linux_armv7l.whl
recommend-type

onnxruntime-1.13.1-cp38-cp38-win_amd64.whl

onnxruntime-1.13.1-cp38-cp38-win_amd64.whl
recommend-type

元学习,小样本图像数据集:FC100数据集

Few-shot CIFAR100数据集,来自CIFAR100数据集。 数据集共包含100类别,每个类别600张图像,合计60,000张图像。 数据集介绍:分为训练集、验证集、测试集 --data--train--:60个文件夹,36,000张图片 --data--val--: 20个文件夹,12,000张图片 --data--test--:20个文件夹,12,000张图片 FC100按照超类(Superclass)进行划分:训练集60个超类,验证集20个超类,测试集20个类别。
recommend-type

numpy-1.19.5-cp39-cp39-linux_armv7l.whl

numpy-1.19.5-cp39-cp39-linux_armv7l.whl
recommend-type

基于springboot的城乡商城协作系统源码数据库文档.zip

基于springboot的城乡商城协作系统源码数据库文档.zip
recommend-type

基于Python和Opencv的车牌识别系统实现

资源摘要信息:"车牌识别项目系统基于python设计" 1. 车牌识别系统概述 车牌识别系统是一种利用计算机视觉技术、图像处理技术和模式识别技术自动识别车牌信息的系统。它广泛应用于交通管理、停车场管理、高速公路收费等多个领域。该系统的核心功能包括车牌定位、车牌字符分割和车牌字符识别。 2. Python在车牌识别中的应用 Python作为一种高级编程语言,因其简洁的语法和强大的库支持,非常适合进行车牌识别系统的开发。Python在图像处理和机器学习领域有丰富的第三方库,如OpenCV、PIL等,这些库提供了大量的图像处理和模式识别的函数和类,能够大大提高车牌识别系统的开发效率和准确性。 3. OpenCV库及其在车牌识别中的应用 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和模式识别的接口。在车牌识别系统中,可以使用OpenCV进行图像预处理、边缘检测、颜色识别、特征提取以及字符分割等任务。同时,OpenCV中的机器学习模块提供了支持向量机(SVM)等分类器,可用于车牌字符的识别。 4. SVM(支持向量机)在字符识别中的应用 支持向量机(SVM)是一种二分类模型,其基本模型定义在特征空间上间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM算法的核心思想是找到一个分类超平面,使得不同类别的样本被正确分类,且距离超平面最近的样本之间的间隔(即“间隔”)最大。在车牌识别中,SVM用于字符的分类和识别,能够有效地处理手写字符和印刷字符的识别问题。 5. EasyPR在车牌识别中的应用 EasyPR是一个开源的车牌识别库,它的c++版本被广泛使用在车牌识别项目中。在Python版本的车牌识别项目中,虽然项目描述中提到了使用EasyPR的c++版本的训练样本,但实际上OpenCV的SVM在Python中被用作车牌字符识别的核心算法。 6. 版本信息 在项目中使用的软件环境信息如下: - Python版本:Python 3.7.3 - OpenCV版本:opencv*.*.*.** - Numpy版本:numpy1.16.2 - GUI库:tkinter和PIL(Pillow)5.4.1 以上版本信息对于搭建运行环境和解决可能出现的兼容性问题十分重要。 7. 毕业设计的意义 该项目对于计算机视觉和模式识别领域的初学者来说,是一个很好的实践案例。它不仅能够让学习者在实践中了解车牌识别的整个流程,而且能够锻炼学习者利用Python和OpenCV等工具解决问题的能力。此外,该项目还提供了一定量的车牌标注图片,这在数据不足的情况下尤其宝贵。 8. 文件信息 本项目是一个包含源代码的Python项目,项目代码文件位于一个名为"Python_VLPR-master"的压缩包子文件中。该文件中包含了项目的所有源代码文件,代码经过详细的注释,便于理解和学习。 9. 注意事项 尽管该项目为初学者提供了便利,但识别率受限于训练样本的数量和质量,因此在实际应用中可能存在一定的误差,特别是在处理复杂背景或模糊图片时。此外,对于中文字符的识别,第一个字符的识别误差概率较大,这也是未来可以改进和优化的方向。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

网络隔离与防火墙策略:防御网络威胁的终极指南

![网络隔离](https://www.cisco.com/c/dam/en/us/td/i/200001-300000/270001-280000/277001-278000/277760.tif/_jcr_content/renditions/277760.jpg) # 1. 网络隔离与防火墙策略概述 ## 网络隔离与防火墙的基本概念 网络隔离与防火墙是网络安全中的两个基本概念,它们都用于保护网络不受恶意攻击和非法入侵。网络隔离是通过物理或逻辑方式,将网络划分为几个互不干扰的部分,以防止攻击的蔓延和数据的泄露。防火墙则是设置在网络边界上的安全系统,它可以根据预定义的安全规则,对进出网络
recommend-type

在密码学中,对称加密和非对称加密有哪些关键区别,它们各自适用于哪些场景?

在密码学中,对称加密和非对称加密是两种主要的加密方法,它们在密钥管理、计算效率、安全性以及应用场景上有显著的不同。 参考资源链接:[数缘社区:密码学基础资源分享平台](https://wenku.csdn.net/doc/7qos28k05m?spm=1055.2569.3001.10343) 对称加密使用相同的密钥进行数据的加密和解密。这种方法的优点在于加密速度快,计算效率高,适合大量数据的实时加密。但由于加密和解密使用同一密钥,密钥的安全传输和管理就变得十分关键。常见的对称加密算法包括AES(高级加密标准)、DES(数据加密标准)、3DES(三重数据加密算法)等。它们通常适用于那些需要
recommend-type

我的代码小部件库:统计、MySQL操作与树结构功能

资源摘要信息:"leetcode用例构造-my-widgets是作者为练习、娱乐或实现某些项目功能而自行开发的一个代码小部件集合。这个集合中包含了作者使用Python语言编写的几个实用的小工具模块,每个模块都具有特定的功能和用途。以下是具体的小工具模块及其知识点的详细说明: 1. statistics_from_scratch.py 这个模块包含了一些基础的统计函数实现,包括但不限于均值、中位数、众数以及四分位距等。此外,它还实现了二项分布、正态分布和泊松分布的概率计算。作者强调了使用Python标准库(如math和collections模块)来实现这些功能,这不仅有助于巩固对统计学的理解,同时也锻炼了Python编程能力。这些统计函数的实现可能涉及到了算法设计和数学建模的知识。 2. mysql_io.py 这个模块是一个Python与MySQL数据库交互的接口,它能够自动化执行数据的导入导出任务。作者原本的目的是为了将Leetcode平台上的SQL测试用例以字典格式自动化地导入到本地MySQL数据库中,从而方便在本地测试SQL代码。这个模块中的MysqlIO类支持将MySQL表导出为pandas.DataFrame对象,也能够将pandas.DataFrame对象导入为MySQL表。这个工具的应用场景可能包括数据库管理和数据处理,其内部可能涉及到对数据库API的调用、pandas库的使用、以及数据格式的转换等编程知识点。 3. tree.py 这个模块包含了与树结构相关的一系列功能。它目前实现了二叉树节点BinaryTreeNode的构建,并且提供了从列表构建二叉树的功能。这可能涉及到数据结构和算法中的树形结构、节点遍历、树的构建和操作等。利用这些功能,开发者可以在实际项目中实现更高效的数据存储和检索机制。 以上三个模块构成了my-widgets库的核心内容,它们都以Python语言编写,并且都旨在帮助开发者在特定的编程场景中更加高效地完成任务。这些工具的开发和应用都凸显了作者通过实践提升编程技能的意图,并且强调了开源精神,即将这些工具共享给更广泛的开发者群体,以便他们也能够从中受益。 通过这些小工具的使用,开发者可以更好地理解编程在不同场景下的应用,并且通过观察和学习作者的代码实现,进一步提升自己的编码水平和问题解决能力。"