用matlab写一段贝叶斯BWM的代码
时间: 2024-05-26 08:04:41 浏览: 189
贝叶斯层次分析(Bayesian Analytic Hierarchy Process, BAHP)是层次分析法(AHP)的一种改进方法,它将贝叶斯统计理论引入到层次分析法中,提高了模型的可靠性和准确性。在BAHP中,我们采用贝叶斯方法来对层次结构中的权重进行估计,从而得到更加合理的决策结果。
下面是一个简单的贝叶斯BWM的MATLAB代码实现:
```
% 定义层次结构, 参考 https://wenku.baidu.com/view/5c1e57a4f01dc281e53af8b7.html
hierarchy = struct('criteria',{{'价格','配置','外观','品牌'}},...
'alternatives',{{'A','B','C','D','E','F','G','H','I','J'}});
% 构造评分矩阵
price_matrix = [1,2,3,4,5,6,7,8,9,10;
1/2,1,2,3,4,5,6,7,8,9;
1/3,1/2,1,2,3,4,5,6,7,8;
1/4,1/3,1/2,1,2,3,4,5,6,7;
1/5,1/4,1/3,1/2,1,2,3,4,5,6;
1/6,1/5,1/4,1/3,1/2,1,2,3,4,5;
1/7,1/6,1/5,1/4,1/3,1/2,1,2,3,4;
1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2,3;
1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2;
1/10,1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1];
config_matrix = [1,2,3,4,5,6,7,8,9,10;
1/2,1,2,3,4,5,6,7,8,9;
1/3,1/2,1,2,3,4,5,6,7,8;
1/4,1/3,1/2,1,2,3,4,5,6,7;
1/5,1/4,1/3,1/2,1,2,3,4,5,6;
1/6,1/5,1/4,1/3,1/2,1,2,3,4,5;
1/7,1/6,1/5,1/4,1/3,1/2,1,2,3,4;
1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2,3;
1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2;
1/10,1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1];
appearance_matrix = [1,2,3,4,5,6,7,8,9,10;
1/2,1,2,3,4,5,6,7,8,9;
1/3,1/2,1,2,3,4,5,6,7,8;
1/4,1/3,1/2,1,2,3,4,5,6,7;
1/5,1/4,1/3,1/2,1,2,3,4,5,6;
1/6,1/5,1/4,1/3,1/2,1,2,3,4,5;
1/7,1/6,1/5,1/4,1/3,1/2,1,2,3,4;
1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2,3;
1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2;
1/10,1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1];
brand_matrix = [1,2,3,4,5,6,7,8,9,10;
1/2,1,2,3,4,5,6,7,8,9;
1/3,1/2,1,2,3,4,5,6,7,8;
1/4,1/3,1/2,1,2,3,4,5,6,7;
1/5,1/4,1/3,1/2,1,2,3,4,5,6;
1/6,1/5,1/4,1/3,1/2,1,2,3,4,5;
1/7,1/6,1/5,1/4,1/3,1/2,1,2,3,4;
1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2,3;
1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1,2;
1/10,1/9,1/8,1/7,1/6,1/5,1/4,1/3,1/2,1];
% 将评分矩阵转换为三维矩阵
matrix_3d = zeros(size(price_matrix,1),size(price_matrix,2),4);
matrix_3d(:,:,1) = price_matrix;
matrix_3d(:,:,2) = config_matrix;
matrix_3d(:,:,3) = appearance_matrix;
matrix_3d(:,:,4) = brand_matrix;
% 构造权重先验分布
w_prior_mean = [0.25,0.25,0.25,0.25];
w_prior_cov = diag([0.1,0.1,0.1,0.1]);
% 初始化采样参数
n_iter = 2000;
w_samples = zeros(n_iter,4);
% 进行采样
for i = 1:n_iter
% 从先验分布中采样权重
w = mvnrnd(w_prior_mean,w_prior_cov);
% 计算层次分析法中的一致性比率CR
cr = getCR(matrix_3d,w);
% 判断CR是否小于0.1,如果小于则接受该权重采样
if cr < 0.1
w_samples(i,:) = w;
else % 否则重复采样
i = i - 1;
end
end
% 计算所有采样得到的权重的均值
w_mean = mean(w_samples);
% 输出结果
disp('权重采样结果:');
disp(w_samples);
fprintf('均值为: [%.2f, %.2f, %.2f, %.2f]\n',w_mean);
```
其中,`getCR()`函数用于计算层次分析法中的一致性比率CR,其实现如下:
```
function cr = getCR(matrix_3d,w)
% 计算层次分析法中的一致性比率CR
% matrix_3d: 三维矩阵,表示评分矩阵
% w: 一维数组,表示权重向量
n_criteria = size(matrix_3d,3); % 获取层次结构中的准则数
n_alternatives = size(matrix_3d,2); % 获取层次结构中的备选方案数
% 计算各准则下备选方案的加权平均值
weighted_average = zeros(n_criteria,n_alternatives);
for i = 1:n_criteria
weighted_average(i,:) = sum(matrix_3d(:,:,i).*w(i),1);
end
% 计算一致性指标CI
ci = zeros(n_criteria,1);
for i = 1:n_criteria
tmp = weighted_average(i,:)./w(i);
ci(i) = (max(tmp)-n_alternatives)/(n_alternatives-1);
end
% 计算一致性比率CR
ri = [0,0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45];
cr = max(ci)./ri(n_alternatives);
end
```
在上面的代码中,我们首先定义了层次结构和评分矩阵,然后将评分矩阵转换为三维矩阵,同时定义了权重的先验分布和采样参数。接着,我们使用循环进行采样,每次从先验分布中采样权重,然后计算一致性比率CR,如果CR小于0.1,则接受该权重采样,否则重新采样。最后,我们计算所有采样得到的权重的均值,并输出结果。
注意,在实际应用中,需要根据具体情况调整评分矩阵和权重先验分布,以达到更好的效果。
阅读全文