矩阵向量相乘,TORCH
时间: 2024-03-09 09:42:36 浏览: 57
矩阵向量乘法
3星 · 编辑精心推荐
矩阵向量相乘是指将一个矩阵与一个向量进行乘法运算,得到一个新的向量作为结果。在TORCH(PyTorch)中,可以使用torch.matmul()函数来实现矩阵向量相乘。
具体而言,假设有一个m行n列的矩阵A和一个n维的列向量B,它们的矩阵向量相乘可以表示为C = A * B,其中C是一个m维的列向量。
在TORCH中,可以使用torch.matmul()函数来进行矩阵向量相乘的计算。示例代码如下:
```python
import torch
# 定义矩阵A和向量B
A = torch.tensor([[1, 2, 3], [4, 5, 6]])
B = torch.tensor([7, 8, 9])
# 进行矩阵向量相乘
C = torch.matmul(A, B)
print(C)
```
输出结果为:
```
tensor([ 50, 122])
```
这里的输出结果是一个包含两个元素的张量,即C = [50, 122]。
阅读全文