arduino esp32-c3两位数码管显示设置温度然后开始显示温度传感器读取到的当前温度

时间: 2024-05-15 19:20:08 浏览: 6
以下是一个示例代码,演示如何使用Arduino ESP32-C3控制两位数码管显示当前温度传感器读取到的温度值。 ```c++ #include <Adafruit_NeoPixel.h> // 定义数码管引脚 #define DIGIT1 0 #define DIGIT2 1 #define SEG_A 2 #define SEG_B 3 #define SEG_C 4 #define SEG_D 5 #define SEG_E 6 #define SEG_F 7 #define SEG_G 8 #define SEG_DP 9 // 定义温度传感器引脚 #define TEMPERATURE_PIN A0 // 定义温度显示变量和数码管颜色 float temperature = 0; Adafruit_NeoPixel pixels(2, 10, NEO_GRB + NEO_KHZ800); // 数码管显示函数 void displayTemp(float temp) { int intTemp = int(temp * 10); // 乘以10是为了显示小数点后一位 int digit1 = intTemp / 10; int digit2 = intTemp % 10; digitalWrite(DIGIT1, LOW); digitalWrite(DIGIT2, HIGH); switch(digit2) { case 0: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, LOW); break; case 1: digitalWrite(SEG_A, LOW); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, LOW); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, LOW); break; case 2: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, LOW); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, HIGH); break; case 3: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, HIGH); break; case 4: digitalWrite(SEG_A, LOW); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, LOW); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 5: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, LOW); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 6: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, LOW); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 7: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, LOW); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, LOW); break; case 8: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 9: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; } delay(1); digitalWrite(DIGIT1, HIGH); digitalWrite(DIGIT2, LOW); switch(digit1) { case 0: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, LOW); break; case 1: digitalWrite(SEG_A, LOW); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, LOW); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, LOW); break; case 2: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, LOW); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, HIGH); break; case 3: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, HIGH); break; case 4: digitalWrite(SEG_A, LOW); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, LOW); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 5: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, LOW); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 6: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, LOW); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 7: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, LOW); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, LOW); digitalWrite(SEG_G, LOW); break; case 8: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, HIGH); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; case 9: digitalWrite(SEG_A, HIGH); digitalWrite(SEG_B, HIGH); digitalWrite(SEG_C, HIGH); digitalWrite(SEG_D, HIGH); digitalWrite(SEG_E, LOW); digitalWrite(SEG_F, HIGH); digitalWrite(SEG_G, HIGH); break; } delay(1); } void setup() { // 设置数码管引脚为输出模式 pinMode(DIGIT1, OUTPUT); pinMode(DIGIT2, OUTPUT); pinMode(SEG_A, OUTPUT); pinMode(SEG_B, OUTPUT); pinMode(SEG_C, OUTPUT); pinMode(SEG_D, OUTPUT); pinMode(SEG_E, OUTPUT); pinMode(SEG_F, OUTPUT); pinMode(SEG_G, OUTPUT); pinMode(SEG_DP, OUTPUT); // 设置温度传感器引脚为输入模式 pinMode(TEMPERATURE_PIN, INPUT); // 设置数码管颜色 pixels.begin(); pixels.setPixelColor(0, pixels.Color(255, 0, 0)); pixels.setPixelColor(1, pixels.Color(255, 0, 0)); pixels.show(); } void loop() { // 读取温度传感器 int sensorValue = analogRead(TEMPERATURE_PIN); temperature = (sensorValue / 1023.0) * 3.3; // 电压值 temperature = (temperature - 0.5) * 100; // 温度值 // 数码管显示温度 displayTemp(temperature); // 数码管颜色变化 int colorValue = int(temperature * 2.55); // 温度值转换为颜色值 pixels.setPixelColor(0, pixels.Color(255 - colorValue, colorValue, 0)); pixels.setPixelColor(1, pixels.Color(255 - colorValue, colorValue, 0)); pixels.show(); delay(1000); } ``` 该代码首先定义了数码管引脚和温度传感器引脚。然后在`setup()`函数中,将数码管引脚和温度传感器引脚设置为相应的输入/输出模式,并初始化数码管颜色。 在`loop()`函数中,首先读取温度传感器的值,并将其转换为温度值。然后调用`displayTemp()`函数,将温度值显示在两位数码管上。接着,将温度值转换为RGB颜色值,并将其设置为数码管的颜色。最后,延时1秒钟,等待下一次循环。 需要注意的是,该代码中使用了`Adafruit_NeoPixel`库来控制数码管的颜色。如果您没有安装该库,可以在Arduino IDE菜单中选择“工具->库管理器”,搜索“Adafruit_NeoPixel”,并安装该库。

相关推荐

最新推荐

recommend-type

使用Arduino+IDE进行ESP32-CAM视频流和人脸识别.docx

使用ESP32-CAN和配套OV2640摄像头。 本文是ESP32-CAM板的快速入门指南。我们将向您展示如何使用Arduino IDE在不到5分钟的时间内...注意:在本教程中,我们使用arduino-esp32库中的示例。本教程未介绍如何修改示例。
recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg
recommend-type

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦
recommend-type

课程大作业基于Vue+PHP开发的简单问卷系统源码+使用说明.zip

【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 课程大作业基于Vue+PHP开发的简单问卷系统源码+使用说明.zip Project setup ``` npm install ``` ### Compiles and hot-reloads for development ``` npm run serve ``` ### Compiles and minifies for production ``` npm run build ``` ### Lints and fixes files ``` npm run lint ``` ### Customize configuration See [Configuration Reference](https://cli.vuejs.org/config/).
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。