matlab语音信号加窗
时间: 2023-07-11 17:44:28 浏览: 189
在MATLAB中,可以使用窗口函数对语音信号进行加窗处理。常用的窗口函数有汉明窗、汉宁窗、布莱克曼窗等。
以下是一个示例代码,使用汉明窗对语音信号进行加窗:
```
% 读取语音信号
[x,fs] = audioread('speech.wav');
% 设置窗口长度
winlen = 256;
% 设置汉明窗
win = hamming(winlen);
% 计算帧数
nframes = fix((length(x)-winlen)/(winlen/2))+1;
% 初始化加窗后的语音信号
xw = zeros(nframes, winlen);
% 加窗处理
for i = 1:nframes
start = (i-1)*(winlen/2)+1;
xw(i,:) = x(start:start+winlen-1).*win';
end
```
上述代码中,首先使用 `audioread` 函数读取语音信号,然后设置窗口长度和窗口函数。接着计算帧数,初始化加窗后的语音信号矩阵,并使用循环对每一帧进行加窗处理。最终得到的加窗后语音信号保存在 `xw` 矩阵中。
相关问题
matlab语音信号分帧加窗
在MATLAB中对语音信号进行分帧加窗的步骤如下:
1. 读取语音信号。
```matlab
[x,fs] = audioread('speech.wav'); % speech.wav为语音文件名
```
其中,x是语音信号,fs是采样率。
2. 定义帧长和帧移。
```matlab
frame_length = 0.025; % 帧长为25ms
frame_shift = 0.01; % 帧移为10ms
```
3. 将帧长和帧移转换成采样点数。
```matlab
frame_length = round(frame_length*fs); % 帧长采样点数
frame_shift = round(frame_shift*fs); % 帧移采样点数
```
4. 对语音信号进行分帧。
```matlab
frame_num = fix((length(x)-frame_length)/frame_shift)+1; % 帧数
frames = zeros(frame_length,frame_num); % 存储分帧后的语音
for i = 1:frame_num
start = (i-1)*frame_shift+1; % 当前帧的起始位置
frames(:,i) = x(start:start+frame_length-1); % 分帧
end
```
5. 对每一帧进行加窗。
```matlab
win = hamming(frame_length); % 加窗窗函数
for i = 1:frame_num
frames(:,i) = frames(:,i).*win; % 加窗
end
```
至此,语音信号的分帧加窗完成。可以通过查看frames矩阵的大小、查看其中的某一帧等方式验证结果。
语音信号加窗分帧代码
### Python 中的语音信号加窗分帧
在Python中,可以通过`scipy.signal`库中的窗口函数来实现加窗操作,并通过自定义函数完成分帧。以下是具体代码示例:
```python
import numpy as np
from scipy import signal
def enframe(data, frame_length, hop_size, window_function=None):
"""将输入数据分成多个帧"""
num_frames = (len(data) - frame_length) // hop_size + 1
frames = []
for i in range(num_frames):
start = i * hop_size
end = start + frame_length
frame = data[start:end]
if window_function is not None:
frame *= window_function
frames.append(frame)
return np.array(frames)
# 参数设置
sample_rate = 16000 # 假设采样率为16kHz
data = np.random.randn(sample_rate * 2) # 随机生成两秒的数据作为例子
nw = int(0.025 * sample_rate) # 每帧长度为25ms
inc = int(0.01 * sample_rate) # 移动步长为10ms
winfunc = signal.hamming(nw) # 使用汉明窗
# 执行分帧并应用窗口函数
frames = enframe(data, nw, inc, winfunc)[^3]
print(f"Frames shape: {frames.shape}")
```
这段代码展示了如何创建一个名为`enframe()`的功能函数来进行语音信号的分割成固定大小的时间片段(即“帧”),并且可以在每一帧上乘以指定类型的窗口函数。
### MATLAB 中的语音信号加窗分帧
MATLAB同样提供了方便的方法用于处理音频文件以及执行类似的加窗和分帧任务。下面是一个简单的脚本实例说明这一过程:
```matlab
% 设置参数
Fs = 16e3; % Sampling frequency (Hz)
T = 2; % Duration of the signal (seconds)
t = linspace(0,T,Fs*T); % Time vector
speech_signal = randn(size(t)); % Generate random speech-like noise for demonstration purposes
window_duration_ms = 25;
hop_duration_ms = 10;
frameLength_samples = round(window_duration_ms / 1000 * Fs);
hopSize_samples = round(hop_duration_ms / 1000 * Fs);
% 定义Hamming Window
hammingWindow = hamming(frameLength_samples).';
numFrames = floor((length(speech_signal)-frameLength_samples)/hopSize_samples)+1;
outputMatrix = zeros(frameLength_samples,numFrames);
for k=1:numFrames
startIndex = (k-1)*hopSize_samples+1;
endIndex = min(startIndex+frameLength_samples-1,length(speech_signal));
outputMatrix(:,k)=speech_signal(startIndex:endIndex).*hammingWindow(1:(endIndex-startIndex+1))';
end
disp(['Number of Frames:', num2str(size(outputMatrix,2))]);
```
此段MATLAB代码实现了与上述Python版本相同的操作——读取一段模拟的声音序列,对其进行分帧,并给每帧施加了一个汉明窗权重[^1]。
阅读全文
相关推荐
















