用pytorch写一段输入和输出大小均为(1,7,103)的U-NET网络结构
时间: 2024-03-11 08:50:17 浏览: 61
基于pytorch实现的Resnet+unet 网络对多类别标签的语义分割源码
5星 · 资源好评率100%
下面是一个输入和输出大小均为(1,7,103)的U-NET网络结构的示例代码:
```python
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, padding=1)
self.upconv6 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.conv6 = nn.Conv2d(1024, 512, kernel_size=3, padding=1)
self.upconv7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.conv7 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.upconv8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.conv8 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.upconv9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv9 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.conv10 = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
# Down-sampling
x1 = nn.functional.relu(self.conv1(x))
x2 = nn.functional.relu(self.conv2(nn.functional.max_pool2d(x1, 2)))
x3 = nn.functional.relu(self.conv3(nn.functional.max_pool2d(x2, 2)))
x4 = nn.functional.relu(self.conv4(nn.functional.max_pool2d(x3, 2)))
x5 = nn.functional.relu(self.conv5(nn.functional.max_pool2d(x4, 2)))
# Up-sampling
y6 = self.upconv6(x5)
y6 = torch.cat([y6, x4], dim=1)
y6 = nn.functional.relu(self.conv6(y6))
y7 = self.upconv7(y6)
y7 = torch.cat([y7, x3], dim=1)
y7 = nn.functional.relu(self.conv7(y7))
y8 = self.upconv8(y7)
y8 = torch.cat([y8, x2], dim=1)
y8 = nn.functional.relu(self.conv8(y8))
y9 = self.upconv9(y8)
y9 = torch.cat([y9, x1], dim=1)
y9 = nn.functional.relu(self.conv9(y9))
# Output
out = self.conv10(y9)
return out
```
这个U-NET网络结构包括了5个下采样层和5个上采样层,使用的卷积核大小为3x3。其中,下采样层使用了最大池化层,而上采样层使用了反卷积层。在每个上采样层中,还加入了一个跳跃连接,将下采样层的输出与上采样层的输入进行拼接。最后,输出层使用了一个1x1的卷积层,将通道数降至目标输出通道数。
阅读全文