python实现knn算法鸢尾花源代码

时间: 2023-05-29 14:03:16 浏览: 58
以下是使用Python实现knn算法对鸢尾花进行分类的代码: ```python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 定义knn算法函数 def knn(X_train, y_train, X_test, k): distances = [] targets = [] for i in range(len(X_train)): distance = np.sqrt(np.sum(np.square(X_test - X_train[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train[index]) return np.bincount(targets).argmax() # 对测试集进行预测 predictions = [] for i in range(len(X_test)): predictions.append(knn(X_train, y_train, X_test[i, :], 3)) # 计算预测准确率 accuracy = np.sum(np.array(predictions) == y_test) / len(y_test) print("预测结果:", predictions) print("真实结果:", y_test) print("预测准确率:", accuracy) ``` 输出结果: ``` 预测结果: [2, 0, 2, 0, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 0, 2] 真实结果: [2 0 2 0 0 1 2 2 2 0 1 1 1 0 0 1 1 1 0 0 2 2 2 2 0 2 2 0 0 2] 预测准确率: 0.9333333333333333 ```

相关推荐

KNN(K-Nearest Neighbors)算法是一种常用的分类算法,它的基本思想是找到距离待分类样本最近的K个已知类别的样本点,然后将待分类样本归为出现最多的类别。 下面是Python实现KNN算法对鸢尾花分类的代码: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class KNN: def __init__(self, k): self.k = k def fit(self, X_train, y_train): self.X_train = X_train self.y_train = y_train def predict(self, X_test): y_pred = [] for x in X_test: distances = [] for i in range(len(self.X_train)): distance = np.sqrt(np.sum((x - self.X_train[i]) ** 2)) distances.append((distance, self.y_train[i])) distances = sorted(distances) k_nearest_neighbors = distances[:self.k] k_nearest_neighbors_labels = [label for _, label in k_nearest_neighbors] most_common_label = max(set(k_nearest_neighbors_labels), key=k_nearest_neighbors_labels.count) y_pred.append(most_common_label) return y_pred data = load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = KNN(k=5) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 上述代码首先导入必要的库,然后定义了一个KNN类,其中__init__方法初始化了一个K值,fit方法用于训练模型,predict方法用于对测试样本进行预测。在predict方法中,首先计算测试样本与训练样本之间的距离,然后将距离最近的K个样本点的标签保存到一个列表中,最后统计标签列表中出现最多的标签作为预测结果。 接下来,我们加载鸢尾花数据集并将其分为训练集和测试集。然后,我们使用KNN模型对训练集进行训练,并使用测试集进行预测。最后,我们计算模型的精度并打印出来。
### 回答1: 以下是使用Python实现KNN算法并可视化鸢尾花数据集的代码: python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 iris = load_iris() X = iris.data[:, :2] # 只使用前两个特征 y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=42) # 训练KNN模型 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) # 可视化训练集和测试集 plt.figure(figsize=(10, 6)) plt.scatter(X_train[:, ], X_train[:, 1], c=y_train, cmap='viridis', label='Train') plt.scatter(X_test[:, ], X_test[:, 1], c=y_test, cmap='viridis', marker='x', label='Test') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.legend() plt.show() # 可视化KNN分类结果 plt.figure(figsize=(10, 6)) h = .02 # 网格步长 x_min, x_max = X[:, ].min() - .5, X[:, ].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap='viridis', alpha=.5) plt.scatter(X_train[:, ], X_train[:, 1], c=y_train, cmap='viridis', label='Train') plt.scatter(X_test[:, ], X_test[:, 1], c=y_test, cmap='viridis', marker='x', label='Test') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.legend() plt.show() 运行以上代码,即可得到训练集和测试集的散点图以及KNN分类结果的可视化图。 ### 回答2: KNN(K-Nearest Neighbors)算法是一种简单而有效的分类算法。在Python中,通过使用scikit-learn库,我们可以很方便地对鸢尾花数据进行KNN分类,并将结果进行可视化。 首先,我们需要导入一些必要的库: import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier 接着,我们可以使用以下代码来加载鸢尾花数据集: iris = datasets.load_iris() X = iris.data[:, :2] # 只使用前两个特征 y = iris.target 在这里,我们只使用了鸢尾花数据集中的前两个特征来进行分类。接下来,我们可以通过以下代码将数据集分成训练集和测试集: # 将数据集分成训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 接下来,我们可以通过以下代码对训练集进行KNN分类: # 训练KNN分类器 knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) 在这里,我们使用了KNeighborsClassifier类来创建一个KNN分类器,并使用fit方法对训练集进行训练。 接着,我们可以使用以下代码对测试集进行预测并计算准确率: # 对测试集进行预测并计算准确率 accuracy = knn.score(X_test, y_test) print('Accuracy:', accuracy) 最后,我们可以使用以下代码将鸢尾花数据集和KNN分类结果进行可视化: # 可视化结果 h = .02 # 网格步长 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # 绘制训练集数据点和测试集数据点 plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', cmap=plt.cm.Paired) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.Paired, alpha=0.5) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() 在这里,我们首先使用meshgrid函数创建了一个网格,然后对网格中的每个点进行预测,并将结果进行可视化。同时,我们还绘制了训练集数据点和测试集数据点,以便更好地展示分类结果。 综上所述,通过使用Python中的scikit-learn库,我们可以很方便地对鸢尾花数据进行KNN分类,并将结果进行可视化,从而更好地理解KNN算法的工作原理。 ### 回答3: knn算法(K-Nearest Neighbor)是模式识别中一种常用的算法,它的基本思想是:输入未知实例特征向量,将它与训练集中特征向量进行相似度度量,然后选取训练集中与该实例最为相似的k个实例,利用这k个实例的已知类标,采用多数表决等投票法进行分类预测。这种方法简单而有效,准确性高,特别适合于多分类、样本偏斜不平衡、非线性的数据分类问题。本文将介绍如何使用Python实现KNN算法,并可视化表现在鸢尾花分类问题上。 数据集的导入 我们使用鸢尾花数据集,首先需要导入相关的库和数据。其中,数据集中有4个属性分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)和花瓣宽度(petal width),一共150个样本,分别属于3个类别,分别为Setosa,Versicolor,Virginica。 from sklearn.datasets import load_iris import numpy as np iris = load_iris() iris_data = iris.data iris_labels = iris.target iris_names = iris.target_names KNN算法的实现 KNN算法的核心代码如下所示。其中,distances数组存储了测试集中每个点和每个训练集中点之间的距离,argsort方法则将这些距离按从小到大的顺序排序,并返回对应的下标。由于要选取k个最小值,因此需要选取前k个最小值对应的下标,再统计这些下标对应训练集中类别出现的次数。最后,返回出现次数最多的类别。 #定义KNN分类器 def knn_classify(test_data, train_data, labels, k): distances = np.sqrt(np.sum((train_data - test_data)**2,axis = 1)) sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 maxCount = 0 maxIndex = -1 for key,value in classCount.items(): if value > maxCount: maxCount = value maxIndex = key return maxIndex 可视化表现 为了更加直观地观察KNN算法的分类表现,我们使用Matplotlib库进行可视化。我们将训练集中不同类型的花的属性值绘制在不同的颜色中,并用散点图展示 。接下来,我们将测试集中每个点的属性值和类标绘制在同一张图中,并将分类结果用圆圈标识出来。 import matplotlib.pyplot as plt %matplotlib inline #用散点图展示鸢尾花数据集上不同类型花的属性 colors = ['red','blue','green'] for i in range(len(iris_names)): x = iris_data[:,0][iris_labels == i] y = iris_data[:,1][iris_labels == i] plt.scatter(x, y, c = colors[i],label = iris_names[i]) plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend(loc='upper left') #可视化分类表现 point_size = 50 test_point = [6,3] #假设测试点的属性值为[6,3] plt.scatter(test_point[0],test_point[1],s=point_size,marker='s') #绘制测试点 result = knn_classify(test_point,iris_data,iris_labels,5) plt.scatter(iris_data[:,0][iris_labels == result],iris_data[:,1][iris_labels == result],s=point_size,marker='o') #绘制分类结果圆圈 plt.show() 从可视化结果可以看出,假设测试样本所在的位置为红色正方形,那么距离它最近的5个训练集样本所在的位置为绿色圆圈,故该测试样本被归为绿色类别。
KNN算法是一种基本的分类与回归算法,是一种基于实例的学习方法。下面是用Python实现KNN算法的示例代码: python import numpy as np from collections import Counter class KNN: def __init__(self, k): self.k = k def fit(self, X, y): self.X_train = X self.y_train = y def predict(self, X): y_pred = [self._predict(x) for x in X] return np.array(y_pred) def _predict(self, x): # 计算距离 distances = [np.sqrt(np.sum((x - x_train) ** 2)) for x_train in self.X_train] # 获得k个最近邻的标签 k_idx = np.argsort(distances)[:self.k] k_labels = [self.y_train[i] for i in k_idx] # 投票 most_common = Counter(k_labels).most_common(1) return most_common[0][0] 上面的代码实现了一个KNN类,包括fit方法和predict方法。其中,fit方法用于训练模型,传入训练集的特征X和标签y;predict方法用于预测测试集的标签。在_predict方法中,首先计算测试样本和每个训练样本之间的距离,然后选取距离最近的k个训练样本,统计它们的标签,最后返回出现次数最多的标签作为预测结果。 使用示例: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) # 创建KNN对象 knn = KNN(k=3) # 训练模型 knn.fit(X_train, y_train) # 预测测试集 y_pred = knn.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) 上面的代码使用sklearn库中的iris数据集作为例子,将数据集分为训练集和测试集,创建KNN对象,训练模型,预测测试集,并计算准确率。
鸢尾花分类问题可以使用k-近邻算法(k-nearest neighbors,KNN)进行解决。KNN是一种简单且直观的分类算法,它的基本思想是通过测量不同特征之间的距离来对样本进行分类。 在Python中,可以使用scikit-learn库来实现KNN算法。首先,需要导入必要的库和数据集: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier 然后,加载鸢尾花数据集并将其分为训练集和测试集: python iris = load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) 接下来,创建一个KNN分类器并进行训练: python knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) 最后,使用训练好的模型对测试集进行预测并计算准确率: python accuracy = knn.score(X_test, y_test) 这样就可以得到KNN算法在鸢尾花分类问题上的准确率。 需要注意的是,KNN算法的计算过程相对繁琐,特别是对于高维数据集和大样本量的情况。因此,在实际应用中,可能需要进一步优化算法以提高效率。 #### 引用[.reference_title] - *1* [python实现KNN分类算法(鸢尾花数据集)](https://blog.csdn.net/weixin_43868025/article/details/102559778)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
好的,针对你的问题,我可以给出以下解答: KNN(K-Nearest Neighbors)算法是一种基于实例的学习方法,它的基本思想是根据实例之间的相似度进行分类。鸢尾花数据集是一个经典的分类问题,我们可以使用KNN算法对其进行分类。 首先,我们需要将数据集拆分成训练集和测试集。训练集用于训练模型,测试集用于测试模型的准确度。在这里,我们可以使用sklearn库中的train_test_split函数进行数据集的划分。 接着,我们可以使用sklearn库中的KNeighborsClassifier类来实现KNN算法。该类中的重要参数有n_neighbors(K值)、weights(近邻的权重)、metric(距离度量方法)等。在这里,我们可以将K值设定为3,距离度量方法设定为欧氏距离。 最后,我们可以使用训练集中的数据来训练模型,并使用测试集中的数据对模型进行测试。 以下是使用Python实现KNN算法对鸢尾花数据进行分类的示例代码: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 数据集拆分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 使用KNN算法进行分类 knn = KNeighborsClassifier(n_neighbors=3, weights='uniform', metric='euclidean') knn.fit(X_train, y_train) # 模型测试 accuracy = knn.score(X_test, y_test) print('模型准确率为:', accuracy) 执行以上代码,即可得到KNN算法对鸢尾花数据进行分类的准确率。

最新推荐

机器学习之KNN算法原理及Python实现方法详解

主要介绍了机器学习之KNN算法原理及Python实现方法,结合实例形式详细分析了机器学习KNN算法原理以及Python相关实现步骤、操作技巧与注意事项,需要的朋友可以参考下

基于python实现KNN分类算法

主要为大家详细介绍了基于python实现KNN分类算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

机器学习实战 - KNN(K近邻)算法PDF知识点详解 + 代码实现

邻近算法,或者说K最邻近(KNN,K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据...

读取本地json文件并绘制表格

本文为避免跨域问题,使用了改造过的本地json文件的方法实现读取json数据并绘制表格。 如果发起http请求获取本地 json文件中数据,需要架设本地服务器,本文不做阐述。 具体见:https://sunriver2000.blog.csdn.net/article/details/133437695

品管圈QCC活动方法介绍.pdf

品管圈QCC活动方法介绍.pdf

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

rabbitmq客户端账号密码

在默认情况下,RabbitMQ的客户端账号和密码是"guest"。 但是,默认情况下,这个账号只能在localhost本机下访问,无法远程登录。如果需要添加一个远程登录的用户,可以使用命令rabbitmqctl add_user来添加用户,并使用rabbitmqctl set_permissions设置用户的权限。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [保姆级别带你入门RabbitMQ](https:

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�