基于q-learning算法的机器人路径规划系统

时间: 2023-05-09 09:02:29 浏览: 165
基于q-learning算法的机器人路径规划系统是一种基于强化学习的智能控制系统。它主要是为了实现机器人自主决策导航,在未知环境下找到最优路径。该系统主要包含环境、状态、动作和奖励四个部分。 首先,系统需要对环境进行建模,将给定的环境转化为状态空间,将目标点和障碍点等元素加入其中。然后,机器人需要进行感知,通过传感器收集环境信息,并将其转化为状态变量。 接下来,机器人需要进行决策。根据当前状态选择一个动作。在q-learning算法中,动作可分为随机探索和基于贪心策略的行为选择。机器人将在选择动作后执行该动作并获取奖励。 这一过程是不断循环的。在每个时间步中,机器人会在环境中感知,选择动作并执行动作,然后更新q值函数。q值函数表示了当前状态、当前动作的价值。在机器人多次与环境互动后,通过不断更新q值函数,系统可以学习到最优策略,并实现路径规划。 基于q-learning的机器人路径规划系统具有很强的适应性和泛化性。当环境发生变化时,机器人可以基于之前学习的经验快速适应新的环境。该系统具有广泛的应用前景,如无人车、机器人巡逻等领域。
相关问题

用python解决基于q-learning算法的路径规划

基于Q-learning算法的路径规划是通过给定的状态空间和动作空间,在强化学习的框架下探索最优策略。其中,Q-learning算法是一种基于值函数的强化学习算法,它通过更新Q值函数来实现对最优策略的学习。在路径规划中,状态空间包括已知的地图信息,动作空间包括机器人可选的行动。 Python作为一种强大的编程语言,可以用于实现基于Q-learning算法的路径规划。实现路径规划的代码包括以下主要步骤: 1. 定义状态空间和动作空间:在Python代码中,可以使用列表、字典等数据结构定义状态空间和动作空间。 2. 定义Q值函数:Q值函数是一个映射,将状态空间和动作空间映射到Q值,表示从某个状态进行某个动作可以获得的收益。 3. 初始化Q值函数:在Python代码中,可以使用numpy库来初始化Q值函数。 4. 实现Q-learning算法:在Python代码中,可以使用循环迭代算法实现Q-learning算法,更新Q值函数,直到收敛到最优策略。 5. 路径规划:在Python代码中,可以使用最优策略,从起点到终点,输出最优路径。 总之,Python提供了丰富的编程工具和算法库,可以快速实现基于Q-learning算法的路径规划,具有较高的可读性和可维护性,同时也具有广泛的应用前景。

能否提供一个C++实现的基于Q-learning算法的机器人路径规划详细代码示例?

在C++中实现Q-learning算法的机器人路径规划,首先需要理解Q-learning是一种强化学习算法,用于解决决策过程的问题。以下是一个简单的Q-learning代码示例,假设我们有一个二维网格世界,机器人可以向上、下、左、右移动。请注意,这只是一个基础的框架,并未包括完整的路径规划,因为Q-learning本身并不直接用于规划路径,它通常用于学习策略。 ```cpp #include <iostream> #include <vector> #include <cmath> // 状态值函数 Q(s,a) double q_table[的状态空间大小][动作空间大小]; // 更新 Q 表格的函数 void update_q(double old_value, double new_value, double learning_rate, double discount_factor) { q_table[状态索引][动作索引] = (1 - learning_rate) * old_value + learning_rate * (new_value); } // 深度优先搜索(这里仅作示范,实际路径规划可能更复杂) std::vector<int> dfs(int start, int end) { // ... 实现深度优先搜索 ... } int main() { // 初始化 Q 表格 for (int state = 0; state < 态空间大小; state++) { for (int action = 0; action < 动作空间大小; action++) { q_table[state][action] = 0; } } // 设置学习率和折扣因子 double learning_rate = 0.8; double discount_factor = 0.95; // 主循环 while (true) { // 选择动作 int current_state = 获取当前状态(); double max_action_value = -INFINITY; int best_action_index = -1; for (int action = 0; action < 动作空间大小; action++) { if (q_table[current_state][action] > max_action_value) { max_action_value = q_table[current_state][action]; best_action_index = action; } } // 执行动作并获取新状态和奖励 int nextState = 执行动作(best_action_index); double reward = 接收奖励(nextState); // 更新 Q 表格 double next_max_q = std::max(q_table[nextState]); double old_q = q_table[current_state][best_action_index]; update_q(old_q, reward + discount_factor * next_max_q, learning_rate, discount_factor); // 如果达到目标状态,结束学习 if (nextState == end) { break; } } // 使用学习到的 Q 表格选择路径 std::vector<int> path = dfs(start, end); return 0; } ```
阅读全文

相关推荐

pdf
机器⼈python路径规划_基于Q-learning的机器⼈路径规划系统 (matlab) 0 引⾔ Q-Learning算法是由Watkins于1989年在其博⼠论⽂中提出,是强化学习发展的⾥程碑,也是⽬前应⽤最为⼴泛的强化学习算法。Q- Learning⽬前主要应⽤于动态系统、机器⼈控制、⼯⼚中学习最优操作⼯序以及学习棋类对弈等领域。 1 项⽬概述 Q学习在机器⼈路径规划领域有较为⼴泛的应⽤,由于其只需要与环境进⾏交互,且仅需感知当前状态和环境即可对下⼀步动作进⾏决策。 本研究以 MATLAB为基础,设计基于Q学习的最短路径规划算法,并考虑智能体的斜 向运动,更加符合实际情况。同时使⽤DQN⽹络对Q 值更新进⾏⼀定的优 化,使得Q值表能够更加符合实际应⽤。 本次研究的具体步骤如下: 设计⼀个有障碍物的地图,⽤户可以修改障碍物布局,可以指定起点和终点; 使⽤MATLAB编程实现Q-learning算法,⽤于机器⼈规划最短路径,学习算法参数可以由⽤户设置; 使⽤⽤可视化界⾯演⽰Q值变化过程及最短路径探测过程。 2 Q-learning算法思想 Q-Learning算法是⼀种off-policy的强化学习算法,⼀种典型的与模型⽆关的算法。算法通过每⼀步进⾏的价值来进⾏下⼀步的动作。基于 QLearning算法智能体可以在不知道整体环境的情况下,仅通过当前状态对下⼀步做出判断。 Q-Learning是强化学习算法中value-based的算法,Q是指在某⼀时刻的某⼀状态下采取某⼀动作期望获得的收益。环境会根据智能体的动 作反馈相 应的回报,所以算法的主要思想就是将状态与动作构建成⼀张Q值表,然后根据Q值来选取能够获得最⼤的收益的动作。 3 算法步骤 (⼀)Q-学习步骤 初始化Q值表。构造⼀个n⾏n列(n为状态数)的 Q值表,并将表中的所有值初始化为零。 基于当前Q值表选取下⼀个动作a。初始状态时,Q值 均为零,智能体可有很⼤的选择空间,并随机选择下⼀步动作。随着迭代次数增 加,Q值表不断更新,智能体 将会选择回报最⼤的动作。 计算动作回报。采⽤动作a后,根据当前状态和奖励,使⽤Bellman ⽅程更新上⼀个状态的Q(s, t)。 NewQ(s,a) = (1 α)Q(s,a) + α(R(s,a) + γmaxQ (s ,a )) 其中, NewQ(s,a)——上⼀个状态s和动作a的新Q值 Q(s,a)——当前状态s和动作a的Q值 R(s,a)——当前状态s和动作a的奖励r maxQ (s ,a )——新的状态下所有动作中最⼤的Q值 重复步骤3,直到迭代结束,得到最终的Q值表。 根据Q值表选择最佳路径。 (⼆)算法改进 避免局部最优 Q-learning本质上是贪⼼算法。如果每次都取预期奖励最⾼的⾏为去 做,那么在训练过程中可能⽆法探索其他可能的⾏为,甚⾄会进 ⼊"局部 最优",⽆法完成游戏。所以,设置系数,使得智能体有⼀定的概率采取 最优⾏为,也有⼀定概率随即采取所有可采取的⾏动。 将⾛过的路径纳⼊ 记忆库,避免⼩范围内的循环。 增加斜向运动 将斜向运动的奖励值设置为 2/ 2 ,取近似值0.707,可以避免出现如机器 ⼈先向左上⽅移动再向左下⽅移动⽽不选择直接向左移动两格 的情况。设 置为此值是根据地图的两格之间的相对距离确定的。 4 MATLAB实现代码 %% 基于Q-learning算法的机器⼈路径规划系统 clear %% ⾸先创造⼀个机器⼈运动的环境 % n是该运动的运动环境的矩阵environment(n,n)的⾏列⼤⼩ n = 20; % 新建⼀个全为1的n*n维environment矩阵 environment = ones(n,n); %下⾯设置环境中的障碍物,将其在矩阵中标为值-100(可⾃⾏设置障碍物) environment(2,2:5)=-100; environment(5,3:5)=-100; environment(4,11:15)=-100; environment(2,13:17)=-100; environment(7,14:18)=-100; environment(3:10,19)=-100; environment(15:18,19)=-100; environment(3:10,19)=-100; environment(3:10,7)=-100; environment(9:19,2)=-100; environment(15:17,7)=-100; environment(10,3:7)=-100; environment(13,5:8)=-100; environment(6:8,4)=-100; environment(13:18,4)=-100; environment(6

大家在看

recommend-type

TPS54160实现24V转正负15V双输出电源AD设计全方案

TPS54160实现24V转正负15V双输出电源AD设计硬件原理PCB+封装库。全套资料使用Altium dsigner 16.1设计,可以给一些需要正负15V电源供电的运放使用。
recommend-type

Windows6.1--KB2533623-x64.zip

Windows6.1--KB2533623-x64.zip
recommend-type

创建的吉他弦有限元模型-advanced+probability+theory(荆炳义+高等概率论)

图 13.16 单元拷贝对话 框 5.在对话框中的 Total number of copies-including original (拷贝总数)文本框中输入 30, 在 Node number increment (节点编号增量)文本框中输入 1。ANSYS 程序将会在编号相邻的 节点之间依次创建 30 个单元(包括原来创建的一个)。 6.单击 按钮对设置进行确认,关闭对话框。图形窗口中将会显示出完整的由 30 个单元组成的弦,如图 13.17 所示。 图 13.17 创建的吉他弦有限元模型 7.单击 ANSYS Toolbar (工具条)上的 按钮,保存数据库文件。 Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.
recommend-type

算法交易模型控制滑点的原理-ws2811规格书 pdf

第八章 算法交易模型控制滑点 8.1 了解滑点的产生 在讲解这类算法交易模型编写前,我们需要先来了解一下滑点是如何产生的。在交易的过程 中,会有行情急速拉升或者回落的时候,如果模型在这种极速行情中委托可能需要不断的撤单追 价,就会导致滑点增大。除了这种行情外,震荡行情也是产生滑点的原因之一,因为在震荡行情 中会出现信号忽闪的现象,这样滑点就在无形中增加了。 那么滑点会产生影响呢?它可能会导致一个本可以盈利的模型转盈为亏。所以我们要控制滑 点。 8.2 算法交易模型控制滑点的原理 通常我们从两个方面来控制算法交易模型的滑点,一是控制下单过程,二是对下单后没有成 交的委托做适当的节约成本的处理。 1、控制下单时间: 比如我们如果担心在震荡行情中信号容易出现消失,那么就可以控制信号出现后 N秒,待其 稳定了,再发出委托。 2. 控制下单的过程: 比如我们可以控制读取交易合约的盘口价格和委托量来判断现在委托是否有成交的可能,如 果我们自己的委托量大,还可以做分批下单处理。 3、控制未成交委托: 比如同样是追价,我们可以利用算法交易模型结合当前的盘口价格进行追价,而不是每一只
recommend-type

Matlab seawater工具包

Matlab seawater工具包

最新推荐

recommend-type

用Q-learning算法实现自动走迷宫机器人的方法示例

在本文中,我们将深入探讨如何使用Q-learning算法来实现一个能自动走迷宫的机器人。Q-learning是一种强化学习算法,它允许智能体通过与环境的交互来学习最优策略,以达到最大化长期奖励的目标。 首先,我们要理解...
recommend-type

jQuery bootstrap-select 插件实现可搜索多选下拉列表

Bootstrap-select是一个基于Bootstrap框架的jQuery插件,它允许开发者在网页中快速实现一个具有搜索功能的可搜索多选下拉列表。这个插件通常用于提升用户界面中的选择组件体验,使用户能够高效地从一个较大的数据集中筛选出所需的内容。 ### 关键知识点 1. **Bootstrap框架**: Bootstrap-select作为Bootstrap的一个扩展插件,首先需要了解Bootstrap框架的相关知识。Bootstrap是一个流行的前端框架,用于开发响应式和移动优先的项目。它包含了很多预先设计好的组件,比如按钮、表单、导航等,以及一些响应式布局工具。开发者使用Bootstrap可以快速搭建一致的用户界面,并确保在不同设备上的兼容性和一致性。 2. **jQuery技术**: Bootstrap-select插件是基于jQuery库实现的。jQuery是一个快速、小巧、功能丰富的JavaScript库,它简化了HTML文档遍历、事件处理、动画和Ajax交互等操作。在使用bootstrap-select之前,需要确保页面已经加载了jQuery库。 3. **多选下拉列表**: 传统的HTML下拉列表(<select>标签)通常只支持单选。而bootstrap-select扩展了这一功能,允许用户在下拉列表中选择多个选项。这对于需要从一个较长列表中选择多个项目的场景特别有用。 4. **搜索功能**: 插件中的另一个重要特性是搜索功能。用户可以通过输入文本实时搜索列表项,这样就不需要滚动庞大的列表来查找特定的选项。这大大提高了用户在处理大量数据时的效率和体验。 5. **响应式设计**: bootstrap-select插件提供了一个响应式的界面。这意味着它在不同大小的屏幕上都能提供良好的用户体验,不论是大屏幕桌面显示器,还是移动设备。 6. **自定义和扩展**: 插件提供了一定程度的自定义选项,开发者可以根据自己的需求对下拉列表的样式和行为进行调整,比如改变菜单项的外观、添加新的事件监听器等。 ### 具体实现步骤 1. **引入必要的文件**: 在页面中引入Bootstrap的CSS文件,jQuery库,以及bootstrap-select插件的CSS和JS文件。这是使用该插件的基础。 2. **HTML结构**: 准备标准的HTML <select> 标签,并给予其需要的类名以便bootstrap-select能识别并增强它。对于多选功能,需要在<select>标签中添加`multiple`属性。 3. **初始化插件**: 在文档加载完毕后,使用jQuery初始化bootstrap-select。这通常涉及到调用一个特定的jQuery函数,如`$(‘select’).selectpicker();`。 4. **自定义与配置**: 如果需要,可以通过配置对象来设置插件的选项。例如,可以设置搜索输入框的提示文字,或是关闭/打开某些特定的插件功能。 5. **测试与调试**: 在开发过程中,需要在不同的设备和浏览器上测试插件的表现,确保它按照预期工作。这包括测试多选功能、搜索功能以及响应式布局的表现。 ### 使用场景 bootstrap-select插件适合于多种情况,尤其是以下场景: - 当需要在一个下拉列表中选择多个选项时,例如在设置选项、选择日期范围、分配标签等场景中。 - 当列表项非常多,用户需要快速找到特定项时,搜索功能可以显著提高效率。 - 当网站需要支持多种屏幕尺寸和设备,需要一个统一的响应式UI组件时。 ### 注意事项 - 确保在使用bootstrap-select插件前已正确引入Bootstrap、jQuery以及插件自身的CSS和JS文件。 - 在页面中可能存在的其他JavaScript代码或插件可能与bootstrap-select发生冲突,所以需要仔细测试兼容性。 - 在自定义样式时,应确保不会影响插件的正常功能和响应式特性。 ### 总结 bootstrap-select插件大大增强了传统的HTML下拉列表,提供了多选和搜索功能,并且在不同设备上保持了良好的响应式表现。通过使用这个插件,开发者可以很容易地在他们的网站或应用中实现一个功能强大且用户体验良好的选择组件。在实际开发中,熟悉Bootstrap框架和jQuery技术将有助于更有效地使用bootstrap-select。
recommend-type

【戴尔的供应链秘密】:实现“零库存”的10大策略及案例分析

# 摘要 供应链管理的效率和效果在现代企业运营中发挥着至关重要的作用。本文首先概述了供应链管理的理论基础,随后深入探讨了零库存的概念及其对供应链优化的重要性。零库存管理通过降低库存持有成本和改善服务水平,实现了供应链的高效协同和库存风险的降低。文章通过戴尔公司的案例,分析了实现零库存的策略,包括精益生产、拉式系统、供应链协同、定制化与延迟差异化等。同时,文章
recommend-type

编写AT89C51汇编代码要求通过开关控制LED灯循环方向。要求:P1口连接8个LED,P0.0连接开关用以控制led流动方向。

编写AT89C51汇编代码来控制LED灯循环方向的基本步骤如下: 首先,我们需要定义一些寄存器和标志位。P1口用于输出LED状态,P0.0作为输入接开关。我们可以创建一个标志位如`DIR_FLAG`来存储LED流动的方向。 ```assembly ; 定义端口地址 P1 equ P1.0 ; LED on port P1 P0 equ P0.0 ; Switch on port P0 ; 定义标志位 DIR_FLAG db 0 ; 初始时LED向左流动 ; 主程序循环 LOOP_START: mov A, #0x0F ; 遍历LED数组,从0到7 led_loop:
recommend-type

Holberton系统工程DevOps项目基础Shell学习指南

标题“holberton-system_engineering-devops”指的是一个与系统工程和DevOps相关的项目或课程。Holberton School是一个提供计算机科学教育的学校,注重实践经验的培养,特别是在系统工程和DevOps领域。系统工程涵盖了一系列方法论和实践,用于设计和管理复杂系统,而DevOps是一种文化和实践,旨在打破开发(Dev)和运维(Ops)之间的障碍,实现更高效的软件交付和运营流程。 描述中提到的“该项目包含(0x00。shell,基础知识)”,则指向了一系列与Shell编程相关的基础知识学习。在IT领域,Shell是指提供用户与计算机交互的界面,可以是命令行界面(CLI)也可以是图形用户界面(GUI)。在这里,特别提到的是命令行界面,它通常是通过一个命令解释器(如bash、sh等)来与用户进行交流。Shell脚本是一种编写在命令行界面的程序,能够自动化重复性的命令操作,对于系统管理、软件部署、任务调度等DevOps活动来说至关重要。基础学习可能涉及如何编写基本的Shell命令、脚本的结构、变量的使用、控制流程(比如条件判断和循环)、函数定义等概念。 标签“Shell”强调了这个项目或课程的核心内容是围绕Shell编程。Shell编程是成为一名高级系统管理员或DevOps工程师必须掌握的技能之一,它有助于实现复杂任务的自动化,提高生产效率,减少人为错误。 压缩包子文件的文件名称列表中的“holberton-system_engineering-devops-master”表明了这是一个版本控制系统的项目仓库。在文件名中的“master”通常表示这是仓库的主分支,代表项目的主版本线。在多数版本控制系统中,如Git,master分支是默认的主分支,用于存放已经稳定的代码。此外,文件名中的“-master”结尾可能还暗示这是一个包含多个文件和目录的压缩包,包含了项目的所有相关代码和资源。 结合上述信息,我们可以知道,这个项目主要关注于DevOps中Shell脚本的编写和使用,这属于系统工程和DevOps基础技能。通过这个项目,用户能够学习到如何创建和维护自动化脚本,进而提高工作效率,加深对操作系统和命令行界面的理解。在DevOps实践中,自动化是一个核心概念,Shell脚本的编写能力可以帮助团队减少手动任务,确保部署流程的一致性和可重复性,这对维护高效率和高质量的软件交付流程至关重要。
recommend-type

Comsol传热模块实战演练:一文看懂热传导全过程

# 摘要 本文对Comsol传热模块进行了全面介绍,内容涵盖热传导的基础理论、模拟操作指南、以及高级模拟技巧。首先,文章概述了Comsol传热模块的主要功能和界面布局,随后深入探讨了热传导的基本理论,包括热传导的定义、分类、基本方程、数学模型建立、边界条件设定等。在操作指南章节中,本篇指导用户熟悉Comsol工具,进行有效建模和网格划分,并设置
recommend-type

生成一个600*70的文件上传区域图片

为了生成一个600x70像素的文件上传区域图片,通常可以使用HTML、CSS和JavaScript结合来创建一个简单的表单,包含一个File Input元素,显示为一个按钮或者预览区域。下面是一个简单的示例: ```html <!DOCTYPE html> <html lang="zh"> <head> <style> .upload-area { width: 600px; height: 70px; border: 1px solid #ccc; display: flex; justify-content: center; align-items: center
recommend-type

图的优先遍历及其算法实现解析

图的遍历是图论和算法设计中的一项基础任务,它主要用于搜索图中的节点并访问它们。图的遍历可以分为两大类:深度优先搜索(DFS)和广度优先搜索(BFS)。图的表示方法主要有邻接矩阵和邻接表两种,每种方法都有其特定的使用场景和优缺点。此外,处理无向图时,经常会用到最小生成树算法。下面详细介绍这些知识点。 首先,我们来探讨图的两种常见表示方法: 1. 邻接矩阵: 邻接矩阵是一种用二维数组表示图的方法。如果图有n个节点,则邻接矩阵是一个n×n的矩阵,其中matrix[i][j]表示节点i和节点j之间是否有边。如果i和j之间有直接的边,则matrix[i][j]为1(或者边的权重),否则为0。邻接矩阵的空间复杂度为O(n^2),它能够快速判断任意两个节点之间是否有直接的连接关系,但当图的边稀疏时,会浪费很多空间。 2. 邻接表: 邻接表使用链表数组的结构来表示图,每个节点都有一个链表,链表中存储了所有与该节点相邻的节点。邻接表的空间复杂度为O(V+E),其中V是节点数量,E是边的数量。对于稀疏图而言,邻接表比邻接矩阵更加节省空间。 接下来,我们讨论图的深度和广度优先搜索算法: 1. 深度优先搜索(DFS): 深度优先搜索是一种用于遍历或搜索树或图的算法。在图中执行DFS时,算法从一个顶点开始,沿着路径深入到一个节点,直到无法继续前进(即到达一个没有未探索相邻节点的节点),然后回溯到前一个节点,并重复这个过程,直到所有节点都被访问。深度优先搜索一般用递归或栈实现,其特点是可以得到一条从起点到终点的路径。 2. 广度优先搜索(BFS): 广度优先搜索也是一种遍历或搜索图的算法,其目的是系统地访问图中每一个节点。它从一个节点开始,先访问它的所有邻居,然后对每一个邻居节点,再次访问它们的邻居,依此类推。因此,BFS可以找到两个节点之间的最短路径(最少边的数量)。广度优先搜索通常使用队列实现。 最后,我们来看连通图的最小生成树算法: 1. 最小生成树(MST): 最小生成树是一个无向连通图的子图,它连接所有顶点,并且边的权值之和最小。处理最小生成树的两个著名算法是普里姆算法(Prim's Algorithm)和克鲁斯卡尔算法(Kruskal's Algorithm)。 - 普里姆算法从任意一个顶点开始,逐步增加新的顶点和边,直到包含所有顶点为止。每次选择连接已有顶点和未加入生成树的新顶点中权值最小的边,直到所有顶点都被加入。 - 克鲁斯卡尔算法从所有边中按权值从小到大排序开始,逐步增加边到最小生成树,只要这条边不会与已有的边构成环。通常使用并查集数据结构来维护哪些顶点已经连通。 以上就是关于图的优先遍历的相关知识点。这些算法和技术在计算机科学中应用广泛,不仅在理论研究中有重要地位,在实际问题中也扮演了关键角色,如网络设计、电路板设计、地图绘制等多个领域。
recommend-type

Comsol传热模块深度剖析:从入门到精通的5大步骤

# 摘要 本文全面介绍了Comsol传热模块的理论基础、应用实践及高级技巧。首先概述了传热学基本原理和Comsol Multiphysics平台功能。其次,详细讲解了如何建立传热模型、设置热分析类型与边界条件、模拟结果的可视化与后处理。第三部分探讨了多物理场耦合、参数化建模及模拟加速技术。最后,结合具体工程项目,分析了传热问题并分享了专家经验与学习资源。本
recommend-type

Barzilar-Borwein(BB)法,结合非单调线搜索准则(Grippo准则)求解以下无约束优化问题,用python语言

Barzilai-Borwein (BB) 法是一种常用的迭代算法,用于解决无约束优化问题,特别是目标函数的最小化。它特别适合于大规模梯度下降方法,因为它不需要计算Hessian矩阵。BB法的核心思想是通过调整步长来改善传统梯度下降法的收敛速度。这种方法基于每次迭代中梯度矢量方向上的一次二次插值,更新步骤更偏向于局部二阶曲率信息。 Grippo准则是一种非单调线搜索策略,允许线搜索过程中步长可以增加(即搜索方向不是严格的下降),只要满足一定的全局和局部最优条件。在BB法中,Grippo准则可以保证在搜索过程中找到有效的步长,即使函数在某个阶段是非减的。 在Python中,我们可以利用sci