逐行解释img = cv2.equalizeHist(img) img = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
时间: 2024-05-22 07:11:27 浏览: 150
`cv2.equalizeHist(img)` 是一个直方图均衡化函数,用于提高图像的对比度和亮度,使得图像更加清晰明亮。
`cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)` 是一个高斯模糊函数,用于降噪。它会对图像进行模糊处理,使得图像中的噪点和细节得到平滑处理,从而提高后续处理的准确性和效果。
其中 `(3, 3)` 表示高斯核的大小,`0` 表示高斯核的标准差,`cv2.BORDER_DEFAULT` 表示使用默认的边界填充方式。
相关问题
import cv2 # 读取图像 img = cv2.imread('user.jpg') # 灰度化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 边缘检测 edges = cv2.Canny(gray, 100, 200) # 噪声去除 blur = cv2.GaussianBlur(edges, (3, 3), 0) # 显示图像 cv2.imshow('image', blur) cv2.waitKey(0) cv2.destroyAllWindows()
以上代码是一个简单的图像处理示例,主要包括灰度化、边缘检测和噪声去除等步骤,可以对输入的图像进行预处理,以提高后续处理的效果。具体流程如下:
1. 加载图像数据,使用cv2.imread()函数读取图像文件,将图像数据存储在img中。
2. 灰度化处理,使用cv2.cvtColor()函数将图像转换为灰度图像,存储在gray中。
3. 边缘检测,使用cv2.Canny()函数对灰度图像进行边缘检测,得到边缘检测结果,存储在edges中。
4. 噪声去除,使用cv2.GaussianBlur()函数对边缘检测结果进行高斯模糊处理,去除噪声,得到最终的预处理结果,存储在blur中。
5. 显示图像,使用cv2.imshow()函数将预处理结果显示出来,使用cv2.waitKey()函数等待用户按下任意键,最后使用cv2.destroyAllWindows()函数关闭所有窗口。
以上代码可以作为图像处理的基础示例,可以根据具体需求进行修改和完善,实现更加复杂的图像处理功能。需要注意的是,在进行图像处理时需要考虑数据安全和隐私保护问题,避免因为图像处理导致的信息泄露等问题。
def find_center(img): h, w = img.shape roi_h = int(h * 2 / 3) roi_img = img[roi_h:, :] img_blur = cv2.GaussianBlur(roi_img, (15, 15), 0) # 高斯模糊 ret, th2 = cv2.threshold(img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) g2 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) open_img = cv2.morphologyEx(th2, cv2.MORPH_OPEN, g2, iterations=3) x_sum = np.sum(open_img, axis=0) x_point = np.where(x_sum > 0) point_x = int((x_point[0][0] + x_point[0][-1]) / 2) # print(roi_h, w) # np.savetxt('reshape_data.txt', x_point, delimiter=' ', fmt='%i') return point_x c++ Eigen opencv
这段代码是一个Python函数,用于从一张图像中找到中心点的x坐标。其中使用了OpenCV库中的一些函数进行图像处理。
如果需要将这段代码转化为C++代码,可以使用Eigen和OpenCV库来实现:
```c++
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
int find_center(cv::Mat img) {
int h = img.rows;
int w = img.cols;
int roi_h = h * 2 / 3;
cv::Mat roi_img = img(cv::Rect(0, roi_h, w, h - roi_h));
cv::Mat img_blur;
cv::GaussianBlur(roi_img, img_blur, cv::Size(15, 15), 0);
cv::Mat th2;
cv::threshold(img_blur, th2, 0, 255, cv::THRESH_BINARY + cv::THRESH_OTSU);
cv::Mat g2 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::Mat open_img;
cv::morphologyEx(th2, open_img, cv::MORPH_OPEN, g2, cv::Point(-1, -1), 3);
Eigen::MatrixXi open_mat(h - roi_h, w);
for (int i = 0; i < h - roi_h; i++) {
for (int j = 0; j < w; j++) {
open_mat(i, j) = open_img.at<uchar>(i, j);
}
}
Eigen::VectorXi x_sum(w);
for (int i = 0; i < w; i++) {
x_sum(i) = open_mat.col(i).sum();
}
Eigen::ArrayXi x_point = (x_sum.array() > 0).select(Eigen::ArrayXi::LinSpaced(w, 0, w - 1), -1);
int point_x = (x_point(0) + x_point(w - 1)) / 2;
return point_x;
}
```
注意,此处使用了Eigen库来进行矩阵计算,需要在代码中引入相应的头文件和命名空间。同时,将OpenCV中的Mat转换为Eigen库中的Matrix类型,需要使用循环将每个像素的值拷贝到矩阵中。
阅读全文