3d-unet
时间: 2023-06-30 13:15:52 浏览: 123
my_3d_unet
以下是一个简单的 3D Unet 模型的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv3D, MaxPooling3D, Dropout, concatenate, UpSampling3D
def unet_3d(input_size=(128, 128, 128, 1)):
inputs = Input(input_size)
# 左边部分
conv1 = Conv3D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv3D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)
conv2 = Conv3D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv3D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)
conv3 = Conv3D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv3D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2))(conv3)
conv4 = Conv3D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv3D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling3D(pool_size=(2, 2, 2))(drop4)
# 右边部分
conv5 = Conv3D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv3D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv3D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling3D(size=(2, 2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=4)
conv6 = Conv3D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv3D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv3D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling3D(size=(2, 2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=4)
conv7 = Conv3D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv3D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv3D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling3D(size=(2, 2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=4)
conv8 = Conv3D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv3D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv3D(32, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling3D(size=(2, 2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=4)
conv9 = Conv3D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv3D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv3D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
# 输出
outputs = Conv3D(1, 1, activation='sigmoid')(conv9)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model
```
这是一个常见的 3D Unet 模型,与 2D Unet 模型类似,包括左边的下采样部分和右边的上采样部分。不同的是,在 3D Unet 中,我们使用了 3D 卷积层和 3D 池化层来逐渐减小特征图的大小,在上采样部分,我们使用了 3D 反卷积层和跳跃连接来逐渐增大特征图的大小,并将下采样部分相应的特征图与上采样部分的特征图进行拼接。最后,我们使用一个 3D 卷积层将 2 个通道的特征图转换为 1 个通道的输出。
阅读全文