基于遗传和模拟退火的三维装箱问题matlab求解代码

时间: 2023-11-14 20:07:39 浏览: 91
RAR

遗传退火算法,含matlab算法,Matlab的模拟退火算法工具箱、代码

star5星 · 资源好评率100%
三维装箱问题是一个经典的组合优化问题,其目标是将一堆不同尺寸的物品放入尽可能少的盒子中,同时满足每个盒子的容量限制和物品不重叠的约束条件。遗传算法和模拟退火算法是两种常用的解决该问题的优化算法。下面是一个基于Matlab的遗传算法和模拟退火算法求解三维装箱问题的代码实现: 遗传算法: ```matlab % 初始化参数 popsize = 50; % 种群大小 maxgen = 100; % 最大迭代次数 pc = 0.8; % 交叉概率 pm = 0.1; % 变异概率 elite = 1; % 精英个体数 L = [10 10 10]; % 箱子长宽高 w = [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]; % 物品重量 p = [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]; % 物品体积 % 初始化种群 pop = initpop(popsize, w, p, L); % 迭代 for i = 1:maxgen % 选择 fit = fitness(pop, w, p, L); [popsel, fitsel] = select(pop, fit, elite); % 交叉 popc = crossover(popsel, pc); % 变异 popm = mutation(popc, pm); % 合并种群 pop = [popsel; popm]; end % 打印结果 bestfit = min(fit); bestind = find(fit == bestfit); bestbox = decode(pop(bestind(1), :), w, p, L); disp(['最优解体积:', num2str(bestfit)]); disp(['最优解:', num2str(bestbox)]); ``` 模拟退火算法: ```matlab % 初始化参数 T0 = 100; % 初始温度 Tf = 1; % 终止温度 alpha = 0.99; % 降温系数 L = [10 10 10]; % 箱子长宽高 w = [4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]; % 物品重量 p = [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]; % 物品体积 % 初始化解 s = initpop(1, w, p, L); % 初始化最优解和最优解体积 bests = s; bestfit = fitness(s, w, p, L); % 迭代 T = T0; while T > Tf % 生成新解 news = mutation(s, 1); % 计算新解的适应度 newfit = fitness(news, w, p, L); % 接受新解 delta = newfit - bestfit; if delta < 0 || exp(-delta/T) > rand() s = news; bests = news; bestfit = newfit; end % 降温 T = T * alpha; end % 打印结果 bestbox = decode(bests, w, p, L); disp(['最优解体积:', num2str(bestfit)]); disp(['最优解:', num2str(bestbox)]); ``` 其中,`initpop`函数用于初始化种群,`fitness`函数用于计算个体的适应度,`select`函数用于选择个体,`crossover`函数用于交叉个体,`mutation`函数用于变异个体,`decode`函数用于将二进制编码转换为装箱方案。具体实现可以参考以下代码: ```matlab function pop = initpop(popsize, w, p, L) % 初始化种群 pop = randi([0 1], popsize, length(w)*3); for i = 1:popsize while ~isfeasible(pop(i, :), w, p, L) pop(i, :) = randi([0 1], 1, length(w)*3); end end end function fit = fitness(pop, w, p, L) % 计算适应度 [~, n] = size(pop); fit = zeros(1, size(pop, 1)); for i = 1:size(pop, 1) box = decode(pop(i, :), w, p, L); v = box(1) * box(2) * box(3); fit(i) = sum(pop(i, :)) + any(box(4:end) > L) + any(box(4:end) < 0) + (1-v/(L(1)*L(2)*L(3))); end end function [popsel, fitsel] = select(pop, fit, elite) % 选择 [~, idx] = sort(fit); popsel = pop(idx(1:elite), :); fitsel = fit(idx(1:elite)); p = fit./sum(fit); for i = 1:length(fit)-elite j = find(rand() <= cumsum(p), 1); popsel = [popsel; pop(j, :)]; fitsel = [fitsel fit(j)]; end end function popc = crossover(popsel, pc) % 交叉 [~, n] = size(popsel); popc = popsel; for i = 1:2:n-1 if rand() < pc k = randi([1 n]); popc(i, :) = [popsel(i, 1:k), popsel(i+1, k+1:end)]; popc(i+1, :) = [popsel(i+1, 1:k), popsel(i, k+1:end)]; end end end function popm = mutation(popc, pm) % 变异 [~, n] = size(popc); popm = popc; for i = 1:n if rand() < pm popm(:, i) = 1 - popc(:, i); end end end function box = decode(ind, w, p, L) % 将二进制编码转换为装箱方案 n = length(w); box = zeros(1, n+3); box(1:3) = L; for i = 1:n if ind(3*(i-1)+1) == 0 continue; end j = find(box(4:end) == min(box(4:end)), 1); if box(j+3) == 0 box(j+3) = w(i); else box(j+3) = box(j+3) + w(i); end end end function feasible = isfeasible(ind, w, p, L) % 判断个体是否可行 box = decode(ind, w, p, L); feasible = all(box(4:end) <= L); end ``` 需要注意的是,遗传算法和模拟退火算法都只能得到近似最优解,不能保证得到全局最优解。如果需要得到全局最优解,可以考虑使用其他更加高效的算法,如分支定界算法、禁忌搜索算法等。
阅读全文

相关推荐

zip
1 各类智能优化算法改进及应用 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 2 机器学习和深度学习方面 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 2.图像处理方面 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 3 路径规划方面 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 4 无人机应用方面 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 、无人机安全通信轨迹在线优化 5 无线传感器定位及布局方面 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 6 信号处理方面 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 7 电力系统方面 微电网优化、无功优化、配电网重构、储能配置 8 元胞自动机方面 交通流 人群疏散 病毒扩散 晶体生长 9 雷达方面 卡尔曼滤波跟踪、航迹关联、航迹融合

最新推荐

recommend-type

模拟退火算法与遗传算法结合及多目标优化求解研究.pdf

《模拟退火算法与遗传算法结合及多目标优化求解研究》 多目标优化问题在当前的遗传算法应用中占据重要地位。经典遗传算法在处理此类问题时,往往难以生成足够均匀的帕累托最优集,这是由于其内在的“未成熟收敛”...
recommend-type

基于遗传算法和模拟退火算法的选址分析

【遗传算法】 遗传算法是一种受到生物进化理论启发的全局优化方法,由John Henry Holland在20世纪60年代提出。...在MATLAB环境下,可以通过编写相应的代码来实现这两种算法,进行选址模型的建立、求解和结果分析。
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依