cbar = ax.figure.colorbar(im, ax=ax)如何更改颜色条
时间: 2024-01-15 09:05:07 浏览: 181
要更改颜色条的颜色,你可以使用 `cmap` 参数来指定一个不同的颜色映射。例如,你可以使用 `matplotlib.cm.get_cmap()` 函数获取一个名为 "viridis" 的颜色映射,并将其传递给 `cmap` 参数:
```python
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
im = ax.imshow([[1, 2], [3, 4]])
cbar = ax.figure.colorbar(im, ax=ax, cmap=plt.cm.get_cmap('viridis'))
```
这将创建一个颜色条,其中颜色从 "viridis" 颜色映射中获取。
你还可以使用 `color` 参数来直接指定颜色。例如,如果你想将颜色条设置为红色,你可以将 `color` 参数设置为 "red":
```python
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
im = ax.imshow([[1, 2], [3, 4]])
cbar = ax.figure.colorbar(im, ax=ax, color='red')
```
这将创建一个红色的颜色条。
相关问题
优化这个代码import xarray as xr import netCDF4 as nc import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker import cartopy.crs as ccrs import cartopy.feature as cfeature ds = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc', engine='netcdf4') # 读取原始数据 ds_temp = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc') # 区域提取* south_asia = ds_temp.sel(latitude=slice(38, 28), longitude=slice(75, 103)) indian_ocean = ds_temp.sel(latitude=slice(5, -15), longitude=slice(60, 100)) # 高度插值 south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) south_asia_400hpa = south_asia.t.interp(level=400) indian_ocean_400hpa = indian_ocean.t.interp(level=400) # 区域平均 TTP = south_asia_400hpa.mean(dim=('latitude', 'longitude'))#.values TTIO = indian_ocean_400hpa.mean(dim=('latitude', 'longitude'))# TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) # 定义画图区域和投影方式 fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) # 添加地图特征 ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') # 画距平场 im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') # 添加色标 cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') # 添加经纬度坐标轴标签 ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # 添加标题和保存图片 plt.title('Temperature anomaly at 400hPa over South Asia and the Indian Ocean') plt.savefig('temperature_anomaly.png', dpi=300) plt.show()
1. 首先,可以将多个导入语句合并为一行,以提高代码的可读性。例如:
```
import xarray as xr, netCDF4 as nc, pandas as pd, numpy as np, datetime
import matplotlib.pyplot as plt
import cartopy.mpl.ticker as cticker, cartopy.crs as ccrs, cartopy.feature as cfeature
```
2. 可以在代码中删除不必要的变量,例如 `ds` 和 `ds_temp` 都是指向同一个文件的数据集,因此只需要保留一个即可。
3. 对于数据集的区域提取和高度插值操作,可以将它们合并成一个链式操作,以减少代码行数。例如:
```
south_asia = ds.sel(latitude=slice(38, 28), longitude=slice(75, 103)).t.interp(level=200)
indian_ocean = ds.sel(latitude=slice(5, -15), longitude=slice(60, 100)).t.interp(level=200)
```
4. 对于计算平均值的操作,可以使用 `reduce` 函数,以减少代码行数。例如:
```
TTP, TTIO = np.array([south_asia_400hpa, indian_ocean_400hpa]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
```
5. 可以将一些常量定义为全局变量或者类变量,以方便后续使用。例如:
```
LEVEL = 400
SLICE_LATITUDE = slice(38, 28)
SLICE_LONGITUDE = slice(75, 103)
SLICE_IO_LATITUDE = slice(5, -15)
SLICE_IO_LONGITUDE = slice(60, 100)
TITLE = 'Temperature anomaly at {}hPa over South Asia and the Indian Ocean'.format(LEVEL)
```
6. 可以将绘图的代码封装为一个函数,以提高代码的可读性和复用性。例如:
```
def plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup):
fig = plt.figure(figsize=[10, 8])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree())
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5)
ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray')
ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white')
im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both')
cbar = plt.colorbar(im, ax=ax, shrink=0.8)
cbar.set_label('Temperature anomaly (°C)')
ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree())
lon_formatter = cticker.LongitudeFormatter()
lat_formatter = cticker.LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
plt.title(TITLE)
plt.savefig('temperature_anomaly.png', dpi=300)
plt.show()
```
7. 最后,可以将所有操作封装为一个函数,以方便调用。例如:
```
def calculate_and_plot_temperature_anomaly(filename):
ds = xr.open_dataset(filename)
south_asia = ds.sel(latitude=SLICE_LATITUDE, longitude=SLICE_LONGITUDE).t.interp(level=LEVEL)
indian_ocean = ds.sel(latitude=SLICE_IO_LATITUDE, longitude=SLICE_IO_LONGITUDE).t.interp(level=LEVEL)
south_asia_200hpa = south_asia.t.interp(level=200)
indian_ocean_200hpa = indian_ocean.t.interp(level=200)
TTP, TTIO = np.array([south_asia, indian_ocean]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude'))
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815)
plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup)
```
这样,我们就可以通过调用 `calculate_and_plot_temperature_anomaly(filename)` 函数来计算和绘制温度距平图了。
已知程序 import xarray as xr from collections import namedtuple import numpy as np from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import matplotlib.ticker as mticker import cartopy.feature as cfeature import cartopy.crs as ccrs import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors def region_mask(lon, lat, extents): lonmin, lonmax, latmin, latmax = extents return ( (lon >= lonmin) & (lon <= lonmax) & (lat >= latmin) & (lat <= latmax) ) Point = namedtuple('Point', ['x', 'y']) Pair = namedtuple('Pair', ['start', 'end']) time = '2023-05-04' filepath_DPR = r"C:\pythontest\zFactor\test1.nc4" extents = [110, 122, 25, 38] with xr.open_dataset(filepath_DPR) as f: lon_DPR = f['FS_Longitude'][:] lat_DPR = f['FS_Latitude'][:] zFactorFinalNearSurface = f['FS_SLV_zFactorFinalNearSurface'][:] nscan, nray = lon_DPR.shape midray = nray // 2 mask = region_mask(lon_DPR[:, midray], lat_DPR[:, midray], extents) index = np.s_[mask] lon_DPR = lon_DPR[index] lat_DPR = lat_DPR[index] zFactorFinalNearSurface = zFactorFinalNearSurface[index] for data in [ zFactorFinalNearSurface, ]: data.values[data <= -9999] = np.nan proj = ccrs.PlateCarree() fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection=proj) ax.coastlines(resolution='50m', lw=0.5) ax.add_feature(cfeature.OCEAN.with_scale('50m')) ax.add_feature(cfeature.LAND.with_scale('50m')) ax.set_xticks(np.arange(-180, 181, 5), crs=proj) ax.set_yticks(np.arange(-90, 91, 5), crs=proj) ax.xaxis.set_minor_locator(mticker.AutoMinorLocator(2)) ax.yaxis.set_minor_locator(mticker.AutoMinorLocator(2)) ax.xaxis.set_major_formatter(LongitudeFormatter()) ax.yaxis.set_major_formatter(LatitudeFormatter()) ax.set_extent(extents, crs=proj) ax.tick_params(labelsize='large') def make_zF_cmap(levels): '''制作雷达反射率的colormap.''' nbin = len(levels) - 1 cmap = cm.get_cmap('jet', nbin) norm = mcolors.BoundaryNorm(levels, nbin) return cmap, norm levels_zF = [0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45] cmap_zF, norm_zF = make_zF_cmap(levels_zF) im = ax.contourf( lon_DPR, lat_DPR, zFactorFinalNearSurface, levels_zF, # 三个物理量为 (500, 49)就是在500*49的格点上赋予这三个物理量 cmap=cmap_zF, norm=norm_zF, extend='both', transform=proj ) cbar = fig.colorbar(im, ax=ax, ticks=levels_zF) cbar.set_label('zFactor (dBZ)', fontsize='large') cbar.ax.tick_params(labelsize='large') ax.set_title(f'DPR zFactor on {time}', fontsize='x-large') plt.show()如何将其中的zFactorFinal变量变为二维
在这段代码中,zFactorFinalNearSurface的shape是(500, 49),其中第一维是nscan(扫描线数),第二维是nray(每个扫描线的射线数)。如果要将zFactorFinalNearSurface变为二维数组,可以将nscan和nray相乘得到总的格点数,然后使用reshape方法将其变为二维数组。代码如下:
```
zFactorFinalNearSurface = zFactorFinalNearSurface[index]
nscan, nray = zFactorFinalNearSurface.shape
zFactorFinalNearSurface_2d = zFactorFinalNearSurface.reshape(nscan*nray, 1)
```
其中,index是通过region_mask函数得到的布尔索引,用于筛选出位于指定区域内的数据。reshape方法中第一个参数是新的shape,这里是(nscan*nray, 1),表示将数据变成nscan*nray行,1列的形状。注意reshape方法返回的是一个新的数组,不会改变原始数组的值。
阅读全文