生成矫正影像 给定一张TIF格式的影像,给定一套格网重投影坐标,输出一张新的TIF影像(要求是分块存储格式Tiled TIF); 实现为C++动态库,输出函数的接口定义如下: imgPath是输入的TIF影像路径; outImgPath是输出的TIF影像路径,要求以Tiled TIF格式存储,分块大小为256; gridWidth是原影像的格网矫正宽度,通常为64; gridPoints是原影像的格网矫正坐标,此数组中坐标点的顺序是逐行顺序存储。 假设影像宽高分别为W,H,那么gridPoints中的点数为ceil(W/64)*H; 由于矫正坐标的最小值不一定为(0,0),因而输出影像是以矫正坐标的覆盖范围来决定影像的宽高,同时要求将矫正坐标的最小值作为偏移坐标值写入到TIF数据的GeoTransform头信息中。 功能要求: 影像可能较大,因而不能完全加载全部影像到内存进行处理,所以只能分块处理; 速度较快,一张1GB的TIF数据,处理时间不能超过20秒; 自编一个程序测试上述接口;3)环境要求: C++, GDAL3.0.2,VS 2017 推荐使用GDAL3.0.2读写影像

时间: 2024-02-01 18:14:56 浏览: 150
RAR

TIF等图像格式文件的处理中间

star4星 · 用户满意度95%
以下是代码实现的一种思路,仅供参考: ```c++ #include "gdal_priv.h" #include <iostream> #include <algorithm> using namespace std; // 定义格网点结构体 struct GridPoint { double x; double y; }; // 定义矩形结构体 struct Rectangle { double minX; double maxX; double minY; double maxY; }; // 获取格网点所在的矩形范围 Rectangle getGridRect(GridPoint* gridPoints, int gridWidth, int index) { Rectangle rect; rect.minX = gridPoints[index].x - gridWidth / 2.0; rect.maxX = gridPoints[index].x + gridWidth / 2.0; rect.minY = gridPoints[index].y - gridWidth / 2.0; rect.maxY = gridPoints[index].y + gridWidth / 2.0; return rect; } // 获取所有格网点所在的总矩形范围 Rectangle getTotalRect(GridPoint* gridPoints, int gridWidth, int width, int height) { Rectangle totalRect; totalRect.minX = gridPoints[0].x - gridWidth / 2.0; totalRect.maxX = gridPoints[width / gridWidth].x + gridWidth / 2.0; totalRect.minY = gridPoints[0].y - gridWidth / 2.0; totalRect.maxY = gridPoints[height / gridWidth].y + gridWidth / 2.0; return totalRect; } // 获取影像坐标点对应的像素坐标 void getPixelCoord(GDALDataset* dataset, double x, double y, int& pixelX, int& pixelY) { double adfGeoTransform[6]; dataset->GetGeoTransform(adfGeoTransform); pixelX = (int)((x - adfGeoTransform[0]) / adfGeoTransform[1] + 0.5); pixelY = (int)((y - adfGeoTransform[3]) / adfGeoTransform[5] + 0.5); } // 获取像素坐标对应的影像坐标点 void getImageCoord(GDALDataset* dataset, int pixelX, int pixelY, double& x, double& y) { double adfGeoTransform[6]; dataset->GetGeoTransform(adfGeoTransform); x = adfGeoTransform[0] + pixelX * adfGeoTransform[1]; y = adfGeoTransform[3] + pixelY * adfGeoTransform[5]; } // 获取像素坐标所在的矩形范围 Rectangle getPixelRect(GDALDataset* dataset, int pixelX, int pixelY, int tileSize) { Rectangle rect; rect.minX = pixelX; rect.maxX = min(pixelX + tileSize, dataset->GetRasterXSize()); rect.minY = pixelY; rect.maxY = min(pixelY + tileSize, dataset->GetRasterYSize()); return rect; } // 矫正影像 void rectifyImage(const char* imgPath, const char* outImgPath, GridPoint* gridPoints, int gridWidth) { // 打开影像 GDALDataset* dataset = (GDALDataset*)GDALOpen(imgPath, GA_ReadOnly); if (dataset == NULL) { cout << "Failed to open input image." << endl; return; } // 获取影像宽度和高度 int width = dataset->GetRasterXSize(); int height = dataset->GetRasterYSize(); // 获取格网点总数 int numGridPoints = (int)ceil(width / (double)gridWidth) * (int)ceil(height / (double)gridWidth); // 获取所有格网点所在的总矩形范围 Rectangle totalRect = getTotalRect(gridPoints, gridWidth, width, height); // 获取输出影像的宽度和高度 int outWidth = (int)ceil((totalRect.maxX - totalRect.minX) / gridWidth); int outHeight = (int)ceil((totalRect.maxY - totalRect.minY) / gridWidth); // 创建输出影像 GDALDriver* driver = GetGDALDriverManager()->GetDriverByName("GTiff"); GDALDataset* outDataset = driver->Create(outImgPath, outWidth, outHeight, dataset->GetRasterCount(), GDT_Byte, NULL); if (outDataset == NULL) { cout << "Failed to create output image." << endl; return; } // 设置输出影像的地理位置信息 double adfGeoTransform[6]; adfGeoTransform[0] = totalRect.minX; adfGeoTransform[1] = gridWidth; adfGeoTransform[2] = 0; adfGeoTransform[3] = totalRect.maxY; adfGeoTransform[4] = 0; adfGeoTransform[5] = -gridWidth; outDataset->SetGeoTransform(adfGeoTransform); // 逐个格网点矫正影像 for (int i = 0; i < numGridPoints; i++) { // 获取格网点所在的矩形范围 Rectangle gridRect = getGridRect(gridPoints, gridWidth, i); // 将矩形范围转换为像素坐标范围 int startPixelX, startPixelY, endPixelX, endPixelY; getPixelCoord(dataset, gridRect.minX, gridRect.maxY, startPixelX, startPixelY); getPixelCoord(dataset, gridRect.maxX, gridRect.minY, endPixelX, endPixelY); // 将像素坐标范围分成小块,逐个处理 const int tileSize = 256; for (int pixelY = startPixelY; pixelY < endPixelY; pixelY += tileSize) { for (int pixelX = startPixelX; pixelX < endPixelX; pixelX += tileSize) { // 获取像素坐标范围 Rectangle pixelRect = getPixelRect(dataset, pixelX, pixelY, tileSize); // 创建内存块 int blockWidth = pixelRect.maxX - pixelRect.minX; int blockHeight = pixelRect.maxY - pixelRect.minY; GByte* blockData = new GByte[blockWidth * blockHeight * dataset->GetRasterCount()]; // 读取像素坐标范围内的数据 CPLErr err = dataset->RasterIO(GF_Read, pixelRect.minX, pixelRect.minY, blockWidth, blockHeight, blockData, blockWidth, blockHeight, GDT_Byte, dataset->GetRasterCount(), NULL, 0, 0, 0); if (err != CE_None) { cout << "Failed to read input image data." << endl; delete[] blockData; return; } // 将像素坐标范围转换为影像坐标范围 double startX, startY, endX, endY; getImageCoord(dataset, pixelRect.minX, pixelRect.minY, startX, startY); getImageCoord(dataset, pixelRect.maxX, pixelRect.maxY, endX, endY); // 获取内存块对应的矩形范围 Rectangle blockRect; blockRect.minX = max(gridRect.minX, startX); blockRect.maxX = min(gridRect.maxX, endX); blockRect.minY = max(gridRect.minY, endY); blockRect.maxY = min(gridRect.maxY, startY); // 将矩形范围转换为像素坐标范围 int startBlockPixelX, startBlockPixelY, endBlockPixelX, endBlockPixelY; getPixelCoord(outDataset, blockRect.minX, blockRect.maxY, startBlockPixelX, startBlockPixelY); getPixelCoord(outDataset, blockRect.maxX, blockRect.minY, endBlockPixelX, endBlockPixelY); // 计算内存块在输出影像中的位置和大小 int outX = startBlockPixelX - pixelRect.minX; int outY = startBlockPixelY - pixelRect.minY; int outWidth = endBlockPixelX - startBlockPixelX; int outHeight = endBlockPixelY - startBlockPixelY; // 写入数据到输出影像中 err = outDataset->RasterIO(GF_Write, outX, outY, outWidth, outHeight, blockData, outWidth, outHeight, GDT_Byte, dataset->GetRasterCount(), NULL, 0, 0, 0); if (err != CE_None) { cout << "Failed to write output image data." << endl; delete[] blockData; return; } // 释放内存块 delete[] blockData; } } } // 关闭数据集 GDALClose(dataset); GDALClose(outDataset); cout << "Rectification complete." << endl; } ``` 以下是测试程序的代码: ```c++ int main() { // 定义格网点数组 const int numGridPoints = 100; GridPoint gridPoints[numGridPoints]; for (int i = 0; i < numGridPoints; i++) { gridPoints[i].x = i * 10000.0; gridPoints[i].y = i * 10000.0; } // 矫正影像 rectifyImage("input.tif", "output.tif", gridPoints, 64); return 0; } ```
阅读全文

相关推荐

最新推荐

recommend-type

基于DaVinciTM的360°全景泊车影像系统的设计与实现

经过图像处理器的处理,包括图像矫正、变换和全景拼接,生成一个360度的全景俯视图,该图像是驾驶员在中控台的显示设备上可以看到的。这种系统极大地提高了驾驶员的视野,减少了因视线盲区导致的刮蹭、碰撞或陷落等...
recommend-type

相机标定的目标、原理PPT(包含标定目的,四种坐标的转换、张正友标定法、单应性矩阵的求解、相机内参外参的求解,畸变矫正等)

例如,从世界坐标系到相机坐标系的转换涉及旋转和平移,然后从相机坐标系到图像坐标系的转换是通过投影完成的,这涉及到焦距和主点(图像坐标系原点在图像中心)。最后,图像坐标系到像素坐标系的转换则考虑了传感器...
recommend-type

单目、双目相机的标定原理以及图解

相机坐标系(Xc, Yc, Zc)通过旋转和平移与世界坐标系(Xw, Yw, Zw)关联,然后图像坐标系(x, y)基于相机坐标系通过针孔模型形成,最后像素坐标系(u, v)是图像坐标系的数字化表示,原点位于图像左上角,每个像素...
recommend-type

【java毕业设计】校内跑腿业务系统源码(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

【java毕业设计】大学志愿填报系统源码(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

Aspose资源包:转PDF无水印学习工具

资源摘要信息:"Aspose.Cells和Aspose.Words是两个非常强大的库,它们属于Aspose.Total产品家族的一部分,主要面向.NET和Java开发者。Aspose.Cells库允许用户轻松地操作Excel电子表格,包括创建、修改、渲染以及转换为不同的文件格式。该库支持从Excel 97-2003的.xls格式到最新***016的.xlsx格式,还可以将Excel文件转换为PDF、HTML、MHTML、TXT、CSV、ODS和多种图像格式。Aspose.Words则是一个用于处理Word文档的类库,能够创建、修改、渲染以及转换Word文档到不同的格式。它支持从较旧的.doc格式到最新.docx格式的转换,还包括将Word文档转换为PDF、HTML、XAML、TIFF等格式。 Aspose.Cells和Aspose.Words都有一个重要的特性,那就是它们提供的输出资源包中没有水印。这意味着,当开发者使用这些资源包进行文档的处理和转换时,最终生成的文档不会有任何水印,这为需要清洁输出文件的用户提供了极大的便利。这一点尤其重要,在处理敏感文档或者需要高质量输出的企业环境中,无水印的输出可以帮助保持品牌形象和文档内容的纯净性。 此外,这些资源包通常会标明仅供学习使用,切勿用作商业用途。这是为了避免违反Aspose的使用协议,因为Aspose的产品虽然是商业性的,但也提供了免费的试用版本,其中可能包含了特定的限制,如在最终输出的文档中添加水印等。因此,开发者在使用这些资源包时应确保遵守相关条款和条件,以免产生法律责任问题。 在实际开发中,开发者可以通过NuGet包管理器安装Aspose.Cells和Aspose.Words,也可以通过Maven在Java项目中进行安装。安装后,开发者可以利用这些库提供的API,根据自己的需求编写代码来实现各种文档处理功能。 对于Aspose.Cells,开发者可以使用它来完成诸如创建电子表格、计算公式、处理图表、设置样式、插入图片、合并单元格以及保护工作表等操作。它也支持读取和写入XML文件,这为处理Excel文件提供了更大的灵活性和兼容性。 而对于Aspose.Words,开发者可以利用它来执行文档格式转换、读写文档元数据、处理文档中的文本、格式化文本样式、操作节、页眉、页脚、页码、表格以及嵌入字体等操作。Aspose.Words还能够灵活地处理文档中的目录和书签,这让它在生成复杂文档结构时显得特别有用。 在使用这些库时,一个常见的场景是在企业应用中,需要将报告或者数据导出为PDF格式,以便于打印或者分发。这时,使用Aspose.Cells和Aspose.Words就可以实现从Excel或Word格式到PDF格式的转换,并且确保输出的文件中不包含水印,这提高了文档的专业性和可信度。 需要注意的是,虽然Aspose的产品提供了很多便利的功能,但它们通常是付费的。用户需要根据自己的需求购买相应的许可证。对于个人用户和开源项目,Aspose有时会提供免费的许可证。而对于商业用途,用户则需要购买商业许可证才能合法使用这些库的所有功能。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言高性能计算秘诀】:代码优化,提升分析效率的专家级方法

![R语言](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. R语言简介与计算性能概述 R语言作为一种统计编程语言,因其强大的数据处理能力、丰富的统计分析功能以及灵活的图形表示法而受到广泛欢迎。它的设计初衷是为统计分析提供一套完整的工具集,同时其开源的特性让全球的程序员和数据科学家贡献了大量实用的扩展包。由于R语言的向量化操作以及对数据框(data frames)的高效处理,使其在处理大规模数据集时表现出色。 计算性能方面,R语言在单线程环境中表现良好,但与其他语言相比,它的性能在多
recommend-type

在构建视频会议系统时,如何通过H.323协议实现音视频流的高效传输,并确保通信的稳定性?

要通过H.323协议实现音视频流的高效传输并确保通信稳定,首先需要深入了解H.323协议的系统结构及其组成部分。H.323协议包括音视频编码标准、信令控制协议H.225和会话控制协议H.245,以及数据传输协议RTP等。其中,H.245协议负责控制通道的建立和管理,而RTP用于音视频数据的传输。 参考资源链接:[H.323协议详解:从系统结构到通信流程](https://wenku.csdn.net/doc/2jtq7zt3i3?spm=1055.2569.3001.10343) 在构建视频会议系统时,需要合理配置网守(Gatekeeper)来提供地址解析和准入控制,保证通信安全和地址管理
recommend-type

Go语言控制台输入输出操作教程

资源摘要信息:"在Go语言(又称Golang)中,控制台的输入输出是进行基础交互的重要组成部分。Go语言提供了一组丰富的库函数,特别是`fmt`包,来处理控制台的输入输出操作。`fmt`包中的函数能够实现格式化的输入和输出,使得程序员可以轻松地在控制台显示文本信息或者读取用户的输入。" 1. fmt包的使用 Go语言标准库中的`fmt`包提供了许多打印和解析数据的函数。这些函数可以让我们在控制台上输出信息,或者从控制台读取用户的输入。 - 输出信息到控制台 - Print、Println和Printf是基本的输出函数。Print和Println函数可以输出任意类型的数据,而Printf可以进行格式化输出。 - Sprintf函数可以将格式化的字符串保存到变量中,而不是直接输出。 - Fprint系列函数可以将输出写入到`io.Writer`接口类型的变量中,例如文件。 - 从控制台读取信息 - Scan、Scanln和Scanf函数可以读取用户输入的数据。 - Sscan、Sscanln和Sscanf函数则可以从字符串中读取数据。 - Fscan系列函数与上面相对应,但它们是将输入读取到实现了`io.Reader`接口的变量中。 2. 输入输出的格式化 Go语言的格式化输入输出功能非常强大,它提供了类似于C语言的`printf`和`scanf`的格式化字符串。 - Print函数使用格式化占位符 - `%v`表示使用默认格式输出值。 - `%+v`会包含结构体的字段名。 - `%#v`会输出Go语法表示的值。 - `%T`会输出值的数据类型。 - `%t`用于布尔类型。 - `%d`用于十进制整数。 - `%b`用于二进制整数。 - `%c`用于字符(rune)。 - `%x`用于十六进制整数。 - `%f`用于浮点数。 - `%s`用于字符串。 - `%q`用于带双引号的字符串。 - `%%`用于百分号本身。 3. 示例代码分析 在文件main.go中,可能会包含如下代码段,用于演示如何在Go语言中使用fmt包进行基本的输入输出操作。 ```go package main import "fmt" func main() { var name string fmt.Print("请输入您的名字: ") fmt.Scanln(&name) // 读取一行输入并存储到name变量中 fmt.Printf("你好, %s!\n", name) // 使用格式化字符串输出信息 } ``` 以上代码首先通过`fmt.Print`函数提示用户输入名字,并等待用户从控制台输入信息。然后`fmt.Scanln`函数读取用户输入的一行信息(包括空格),并将其存储在变量`name`中。最后,`fmt.Printf`函数使用格式化字符串输出用户的名字。 4. 代码注释和文档编写 在README.txt文件中,开发者可能会提供关于如何使用main.go代码的说明,这可能包括代码的功能描述、运行方法、依赖关系以及如何处理常见的输入输出场景。这有助于其他开发者理解代码的用途和操作方式。 总之,Go语言为控制台输入输出提供了强大的标准库支持,使得开发者能够方便地处理各种输入输出需求。通过灵活运用fmt包中的各种函数,可以轻松实现程序与用户的交互功能。