生成矫正影像 给定一张TIF格式的影像,给定一套格网重投影坐标,输出一张新的TIF影像(要求是分块存储格式Tiled TIF); 实现为C++动态库,输出函数的接口定义如下: imgPath是输入的TIF影像路径; outImgPath是输出的TIF影像路径,要求以Tiled TIF格式存储,分块大小为256; gridWidth是原影像的格网矫正宽度,通常为64; gridPoints是原影像的格网矫正坐标,此数组中坐标点的顺序是逐行顺序存储。 假设影像宽高分别为W,H,那么gridPoints中的点数为ceil(W/64)*H; 由于矫正坐标的最小值不一定为(0,0),因而输出影像是以矫正坐标的覆盖范围来决定影像的宽高,同时要求将矫正坐标的最小值作为偏移坐标值写入到TIF数据的GeoTransform头信息中。 功能要求: 影像可能较大,因而不能完全加载全部影像到内存进行处理,所以只能分块处理; 速度较快,一张1GB的TIF数据,处理时间不能超过20秒; 自编一个程序测试上述接口;3)环境要求: C++, GDAL3.0.2,VS 2017 推荐使用GDAL3.0.2读写影像

时间: 2024-02-01 14:14:56 浏览: 166
以下是代码实现的一种思路,仅供参考: ```c++ #include "gdal_priv.h" #include <iostream> #include <algorithm> using namespace std; // 定义格网点结构体 struct GridPoint { double x; double y; }; // 定义矩形结构体 struct Rectangle { double minX; double maxX; double minY; double maxY; }; // 获取格网点所在的矩形范围 Rectangle getGridRect(GridPoint* gridPoints, int gridWidth, int index) { Rectangle rect; rect.minX = gridPoints[index].x - gridWidth / 2.0; rect.maxX = gridPoints[index].x + gridWidth / 2.0; rect.minY = gridPoints[index].y - gridWidth / 2.0; rect.maxY = gridPoints[index].y + gridWidth / 2.0; return rect; } // 获取所有格网点所在的总矩形范围 Rectangle getTotalRect(GridPoint* gridPoints, int gridWidth, int width, int height) { Rectangle totalRect; totalRect.minX = gridPoints[0].x - gridWidth / 2.0; totalRect.maxX = gridPoints[width / gridWidth].x + gridWidth / 2.0; totalRect.minY = gridPoints[0].y - gridWidth / 2.0; totalRect.maxY = gridPoints[height / gridWidth].y + gridWidth / 2.0; return totalRect; } // 获取影像坐标点对应的像素坐标 void getPixelCoord(GDALDataset* dataset, double x, double y, int& pixelX, int& pixelY) { double adfGeoTransform[6]; dataset->GetGeoTransform(adfGeoTransform); pixelX = (int)((x - adfGeoTransform[0]) / adfGeoTransform[1] + 0.5); pixelY = (int)((y - adfGeoTransform[3]) / adfGeoTransform[5] + 0.5); } // 获取像素坐标对应的影像坐标点 void getImageCoord(GDALDataset* dataset, int pixelX, int pixelY, double& x, double& y) { double adfGeoTransform[6]; dataset->GetGeoTransform(adfGeoTransform); x = adfGeoTransform[0] + pixelX * adfGeoTransform[1]; y = adfGeoTransform[3] + pixelY * adfGeoTransform[5]; } // 获取像素坐标所在的矩形范围 Rectangle getPixelRect(GDALDataset* dataset, int pixelX, int pixelY, int tileSize) { Rectangle rect; rect.minX = pixelX; rect.maxX = min(pixelX + tileSize, dataset->GetRasterXSize()); rect.minY = pixelY; rect.maxY = min(pixelY + tileSize, dataset->GetRasterYSize()); return rect; } // 矫正影像 void rectifyImage(const char* imgPath, const char* outImgPath, GridPoint* gridPoints, int gridWidth) { // 打开影像 GDALDataset* dataset = (GDALDataset*)GDALOpen(imgPath, GA_ReadOnly); if (dataset == NULL) { cout << "Failed to open input image." << endl; return; } // 获取影像宽度和高度 int width = dataset->GetRasterXSize(); int height = dataset->GetRasterYSize(); // 获取格网点总数 int numGridPoints = (int)ceil(width / (double)gridWidth) * (int)ceil(height / (double)gridWidth); // 获取所有格网点所在的总矩形范围 Rectangle totalRect = getTotalRect(gridPoints, gridWidth, width, height); // 获取输出影像的宽度和高度 int outWidth = (int)ceil((totalRect.maxX - totalRect.minX) / gridWidth); int outHeight = (int)ceil((totalRect.maxY - totalRect.minY) / gridWidth); // 创建输出影像 GDALDriver* driver = GetGDALDriverManager()->GetDriverByName("GTiff"); GDALDataset* outDataset = driver->Create(outImgPath, outWidth, outHeight, dataset->GetRasterCount(), GDT_Byte, NULL); if (outDataset == NULL) { cout << "Failed to create output image." << endl; return; } // 设置输出影像的地理位置信息 double adfGeoTransform[6]; adfGeoTransform[0] = totalRect.minX; adfGeoTransform[1] = gridWidth; adfGeoTransform[2] = 0; adfGeoTransform[3] = totalRect.maxY; adfGeoTransform[4] = 0; adfGeoTransform[5] = -gridWidth; outDataset->SetGeoTransform(adfGeoTransform); // 逐个格网点矫正影像 for (int i = 0; i < numGridPoints; i++) { // 获取格网点所在的矩形范围 Rectangle gridRect = getGridRect(gridPoints, gridWidth, i); // 将矩形范围转换为像素坐标范围 int startPixelX, startPixelY, endPixelX, endPixelY; getPixelCoord(dataset, gridRect.minX, gridRect.maxY, startPixelX, startPixelY); getPixelCoord(dataset, gridRect.maxX, gridRect.minY, endPixelX, endPixelY); // 将像素坐标范围分成小块,逐个处理 const int tileSize = 256; for (int pixelY = startPixelY; pixelY < endPixelY; pixelY += tileSize) { for (int pixelX = startPixelX; pixelX < endPixelX; pixelX += tileSize) { // 获取像素坐标范围 Rectangle pixelRect = getPixelRect(dataset, pixelX, pixelY, tileSize); // 创建内存块 int blockWidth = pixelRect.maxX - pixelRect.minX; int blockHeight = pixelRect.maxY - pixelRect.minY; GByte* blockData = new GByte[blockWidth * blockHeight * dataset->GetRasterCount()]; // 读取像素坐标范围内的数据 CPLErr err = dataset->RasterIO(GF_Read, pixelRect.minX, pixelRect.minY, blockWidth, blockHeight, blockData, blockWidth, blockHeight, GDT_Byte, dataset->GetRasterCount(), NULL, 0, 0, 0); if (err != CE_None) { cout << "Failed to read input image data." << endl; delete[] blockData; return; } // 将像素坐标范围转换为影像坐标范围 double startX, startY, endX, endY; getImageCoord(dataset, pixelRect.minX, pixelRect.minY, startX, startY); getImageCoord(dataset, pixelRect.maxX, pixelRect.maxY, endX, endY); // 获取内存块对应的矩形范围 Rectangle blockRect; blockRect.minX = max(gridRect.minX, startX); blockRect.maxX = min(gridRect.maxX, endX); blockRect.minY = max(gridRect.minY, endY); blockRect.maxY = min(gridRect.maxY, startY); // 将矩形范围转换为像素坐标范围 int startBlockPixelX, startBlockPixelY, endBlockPixelX, endBlockPixelY; getPixelCoord(outDataset, blockRect.minX, blockRect.maxY, startBlockPixelX, startBlockPixelY); getPixelCoord(outDataset, blockRect.maxX, blockRect.minY, endBlockPixelX, endBlockPixelY); // 计算内存块在输出影像中的位置和大小 int outX = startBlockPixelX - pixelRect.minX; int outY = startBlockPixelY - pixelRect.minY; int outWidth = endBlockPixelX - startBlockPixelX; int outHeight = endBlockPixelY - startBlockPixelY; // 写入数据到输出影像中 err = outDataset->RasterIO(GF_Write, outX, outY, outWidth, outHeight, blockData, outWidth, outHeight, GDT_Byte, dataset->GetRasterCount(), NULL, 0, 0, 0); if (err != CE_None) { cout << "Failed to write output image data." << endl; delete[] blockData; return; } // 释放内存块 delete[] blockData; } } } // 关闭数据集 GDALClose(dataset); GDALClose(outDataset); cout << "Rectification complete." << endl; } ``` 以下是测试程序的代码: ```c++ int main() { // 定义格网点数组 const int numGridPoints = 100; GridPoint gridPoints[numGridPoints]; for (int i = 0; i < numGridPoints; i++) { gridPoints[i].x = i * 10000.0; gridPoints[i].y = i * 10000.0; } // 矫正影像 rectifyImage("input.tif", "output.tif", gridPoints, 64); return 0; } ```
阅读全文

相关推荐

最新推荐

recommend-type

基于DaVinciTM的360°全景泊车影像系统的设计与实现

经过图像处理器的处理,包括图像矫正、变换和全景拼接,生成一个360度的全景俯视图,该图像是驾驶员在中控台的显示设备上可以看到的。这种系统极大地提高了驾驶员的视野,减少了因视线盲区导致的刮蹭、碰撞或陷落等...
recommend-type

相机标定的目标、原理PPT(包含标定目的,四种坐标的转换、张正友标定法、单应性矩阵的求解、相机内参外参的求解,畸变矫正等)

例如,从世界坐标系到相机坐标系的转换涉及旋转和平移,然后从相机坐标系到图像坐标系的转换是通过投影完成的,这涉及到焦距和主点(图像坐标系原点在图像中心)。最后,图像坐标系到像素坐标系的转换则考虑了传感器...
recommend-type

XC7V2000T与TMS320C6678设计文件全解析:含原理图、PCB及验证可直接生产使用,XC7V2000T与TMS320C6678设计文件详解:原理图、PCB等全囊括,验证合格,投入生产准备就

XC7V2000T与TMS320C6678设计文件全解析:含原理图、PCB及验证可直接生产使用,XC7V2000T与TMS320C6678设计文件详解:原理图、PCB等全囊括,验证合格,投入生产准备就绪,XC7V2000T+TMS320C6678设计文件,包含原理图,PCB等文件,已验证,可直接生产。 ,XC7V2000T; TMS320C6678; 原理图; PCB; 已验证; 可直接生产,XC7V2000T与TMS320C6678设计方案文件集,已验证PCB原理图,可直接投入生产
recommend-type

高质量男女性别男女分类数据集340张(已划分训练集与验证集).zip

高质量男女性别男女分类数据集340张(已划分训练集与验证集).zip 两类:男人、女人,多种分类算法直接用,已划分分好 【数据集展示】https://blog.csdn.net/DeepLearning_/article/details/127943096 【项目源码下载】https://download.csdn.net/download/DeepLearning_/87190601
recommend-type

Carbon storage in China’s forest ecosystems estimation by different integrative methods.pdf

Carbon storage in China’s forest ecosystems estimation by different integrative methods.pdf
recommend-type

CentOS 6下Percona XtraBackup RPM安装指南

### Percona XtraBackup RPM安装知识点详解 #### 一、Percona XtraBackup简介 Percona XtraBackup是一个开源的MySQL数据库热备份工具,它能够进行非阻塞的备份,并支持复制和压缩功能,大大降低了备份过程对数据库性能的影响。该工具对MySQL以及衍生的数据库系统(如Percona Server和MariaDB)都非常友好,并广泛应用于需要高性能和备份安全性的生产环境中。 #### 二、Percona XtraBackup安装前提 1. **操作系统环境**:根据给出的文件信息,安装是在CentOS 6系统环境下进行的。CentOS 6已经到达其官方生命周期的终点,因此在生产环境中使用时需要考虑到安全风险。 2. **SELinux设置**:在安装Percona XtraBackup之前,需要修改`/etc/sysconfig/selinux`文件,将SELinux状态设置为`disabled`。SELinux是Linux系统下的一个安全模块,通过强制访问控制保护系统安全。禁用SELinux能够降低安装过程中由于安全策略造成的问题,但在生产环境中,建议仔细评估是否需要禁用SELinux,或者根据需要进行相应的配置调整。 #### 三、RPM安装过程说明 1. **安装包下载**:在安装Percona XtraBackup时,需要使用特定版本的rpm安装包,本例中为`percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`。RPM(RPM包管理器)是一种在Linux系统上广泛使用的软件包管理器,其功能包括安装、卸载、更新和查询软件包。 2. **执行安装命令**:通过命令行执行rpm安装命令(例如:`rpm -ivh percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`),这个命令会安装指定的rpm包到系统中。其中,`-i`代表安装(install),`-v`代表详细模式(verbose),`-h`代表显示安装进度(hash)。 #### 四、CentOS RPM安装依赖问题解决 在进行rpm安装过程中,可能会遇到依赖问题。系统可能提示缺少某些必要的库文件或软件包。安装文件名称列表提到了一个word文档,这很可能是解决此类依赖问题的步骤或说明文档。在CentOS中,可以通过安装`yum-utils`工具包来帮助解决依赖问题,例如使用`yum deplist package_name`查看依赖详情,然后使用`yum install package_name`来安装缺少的依赖包。此外,CentOS 6是基于RHEL 6,因此对于Percona XtraBackup这类较新的软件包,可能需要从Percona的官方仓库获取,而不是CentOS自带的旧仓库。 #### 五、CentOS 6与Percona XtraBackup版本兼容性 `percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`表明该安装包对应的是Percona XtraBackup的2.4.5版本,适用于CentOS 6平台。因为CentOS 6可能不会直接支持Percona XtraBackup的最新版本,所以在选择安装包时需要确保其与CentOS版本的兼容性。对于CentOS 6,通常需要选择专门为老版本系统定制的软件包。 #### 六、Percona XtraBackup的高级功能 Percona XtraBackup不仅支持常规的备份和恢复操作,它还支持增量备份、压缩备份、流式备份和传输加密等高级特性。这些功能可以在安装文档中找到详细介绍,如果存在word文档说明解决问题的过程,则该文档可能也包含这些高级功能的配置和使用方法。 #### 七、安装后配置与使用 安装完成后,通常需要进行一系列配置才能使用Percona XtraBackup。这可能包括设置环境变量、编辑配置文件以及创建必要的目录和权限。关于如何操作这些配置,应该参考Percona官方文档或在word文档中查找详细步骤。 #### 八、维护与更新 安装后,应定期检查Percona XtraBackup的维护和更新,确保备份工具的功能与安全得到保障。这涉及到查询可用的更新版本,并根据CentOS的包管理器(如yum或rpm)更新软件包。 #### 总结 Percona XtraBackup作为一款强大的MySQL热备份工具,在生产环境中扮演着重要角色。通过RPM包在CentOS系统中安装该工具时,需要考虑操作系统版本、安全策略和依赖问题。在安装和配置过程中,应严格遵守官方文档或问题解决文档的指导,确保备份的高效和稳定。在实际应用中,还应根据实际需求进行配置优化,以达到最佳的备份效果。
recommend-type

【K-means与ISODATA算法对比】:聚类分析中的经典与创新

# 摘要 聚类分析作为数据挖掘中的重要技术,用于发现数据中的自然分布模式。本文首先介绍了聚类分析的基本概念及其意义,随后深入探讨了两种广泛使用的聚类算法:K-means和ISODATA。文章详细解析了这两个算法的原理、实现步骤及各自的优缺点,通过对比分析,展示了它们在不同场景下的适用性和性能差异。此外,本文还讨论了聚类算法的发展趋势,包括算法优化和新兴领域的应用前景。最
recommend-type

jupyter notebook没有opencv

### 如何在Jupyter Notebook中安装和使用OpenCV #### 使用`pip`安装OpenCV 对于大多数用户而言,最简单的方法是通过`pip`来安装OpenCV库。这可以通过运行以下命令完成: ```bash pip install opencv-python pip install opencv-contrib-python ``` 上述命令会自动处理依赖关系并安装必要的组件[^3]。 #### 利用Anaconda环境管理工具安装OpenCV 另一种推荐的方式是在Anaconda环境中安装OpenCV。这种方法的优势在于可以更好地管理和隔离不同项目的依赖项。具体
recommend-type

QandAs问卷平台:基于React和Koa的在线调查工具

### 知识点概述 #### 标题解析 **QandAs:一个问卷调查平台** 标题表明这是一个基于问卷调查的Web平台,核心功能包括问卷的创建、编辑、发布、删除及统计等。该平台采用了现代Web开发技术和框架,强调用户交互体验和问卷数据处理。 #### 描述详细解析 **使用React和koa构建的问卷平台** React是一个由Facebook开发和维护的JavaScript库,用于构建用户界面,尤其擅长于构建复杂的、数据频繁变化的单页面应用。该平台的前端使用React来实现动态的用户界面和组件化设计。 Koa是一个轻量级、高效、富有表现力的Web框架,用于Node.js平台。它旨在简化Web应用的开发,通过使用async/await,使得异步编程更加简洁。该平台使用Koa作为后端框架,处理各种请求,并提供API支持。 **在线演示** 平台提供了在线演示的链接,并附有访问凭证,说明这是一个开放给用户进行交互体验的问卷平台。 **产品特点** 1. **用户系统** - 包含注册、登录和注销功能,意味着用户可以通过这个平台进行身份验证,并在多个会话中保持登录状态。 2. **个人中心** - 用户可以修改个人信息,这通常涉及到用户认证模块,允许用户查看和编辑他们的账户信息。 3. **问卷管理** - 用户可以创建调查表,编辑问卷内容,发布问卷,以及删除不再需要的问卷。这一系列功能说明了平台提供了完整的问卷生命周期管理。 4. **图表获取** - 用户可以获取问卷的统计图表,这通常需要后端计算并结合前端可视化技术来展示数据分析结果。 5. **搜索与回答** - 用户能够搜索特定的问卷,并进行回答,说明了问卷平台应具备的基本互动功能。 **安装步骤** 1. **克隆Git仓库** - 使用`git clone`命令从GitHub克隆项目到本地。 2. **进入项目目录** - 通过`cd QandAs`命令进入项目文件夹。 3. **安装依赖** - 执行`npm install`来安装项目所需的所有依赖包。 4. **启动Webpack** - 使用Webpack命令进行应用的构建。 5. **运行Node.js应用** - 执行`node server/app.js`启动后端服务。 6. **访问应用** - 打开浏览器访问`http://localhost:3000`来使用应用。 **系统要求** - **Node.js** - 平台需要至少6.0版本的Node.js环境,Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它使JavaScript能够在服务器端运行。 - **Webpack** - 作为现代JavaScript应用程序的静态模块打包器,Webpack可以将不同的模块打包成一个或多个包,并处理它们之间的依赖关系。 - **MongoDB** - 该平台需要MongoDB数据库支持,MongoDB是一个面向文档的NoSQL数据库,它使用易于理解的文档模型来存储数据,并且能够处理大量的数据和高并发读写。 #### 标签解析 - **React** - 应用的前端开发框架。 - **Redux** - 可能用于管理应用的状态,尽管在描述中没有提及,但标签的存在暗示了它可能被集成在项目中。 - **nodejs** - 表明整个平台是基于Node.js构建的。 - **koa** - 应用的后端开发框架。 - **questionnaire** - 强调该平台的主要用途是处理问卷。 - **KoaJavaScript** - 这个标签可能表明整个项目用JavaScript和Koa框架开发。 #### 压缩包子文件的文件名称列表 **QandAs-master** 这个文件名说明,这是该问卷平台项目的源代码仓库的主分支。在Git中,“master”通常是指主分支,包含了所有已经发布或准备发布的代码版本。 ### 结语 通过以上分析,QandAs这个问卷调查平台具备了完整的问卷生命周期管理功能,并使用了现代的前端和后端技术构建。它提供了一个便捷的在线问卷制作和数据分析平台,并且可以完全通过Git进行版本控制和源代码管理。开发者可以利用这个平台的标签和描述信息来理解项目结构和技术栈,以便进行学习、扩展或维护。
recommend-type

RLE编码与解码原理:揭秘BMP图像处理的关键步骤,提升解码效率

# 摘要 本文深入探讨了RLE(Run-Length Encoding)编码与解码的基础知识、原理和实现,以及其在BMP图像处理中的应用。RLE作为一种简单的无损数据压缩技术,通过识别数据中重复出现的序列来减少文件大小。本文详细解释了RLE的编码和解码原