用matlab仿真一段短时傅里叶变换检测跳频信号的代码,要求fft长度为1024,重叠128,窗函数汉明窗,跳频点为六个,带宽在正负20mhz,信噪比为10db

时间: 2023-09-15 13:19:36 浏览: 70
以下是一段基于MATLAB实现的短时傅里叶变换(STFT)检测跳频信号的代码: ```matlab % 设置参数 fs = 100e6; % 采样率 ts = 1/fs; % 采样间隔 N = 1024; % FFT长度 f = linspace(-fs/2,fs/2,N); % 频率范围 t = 0:ts:1-ts; % 时间范围 overlap = 128; % 重叠长度 window = hamming(N);% 汉明窗 SNR = 10; % 信噪比 f_hop = [-15e6 -10e6 -5e6 5e6 10e6 15e6]; % 跳频点 BW = 20e6; % 带宽 % 生成跳频信号 s = zeros(size(t)); for i = 1:length(f_hop) s(t>=i-1 & t<i) = cos(2*pi*(f_hop(i) + BW*rand(1))*t(t>=i-1 & t<i)); end % 加入高斯白噪声 P_signal = sum(abs(s).^2)/length(s); P_noise = P_signal/(10^(SNR/10)); noise = sqrt(P_noise/2)*randn(size(s)); x = s + noise; % STFT处理 spectrogram(x,window,overlap,f,fs,'yaxis'); colormap(jet); colorbar; ``` 其中,我们首先定义了一些参数,包括采样率、FFT长度、频率范围、时间范围、重叠长度、窗函数、信噪比、跳频点和带宽等。接着,我们生成了一个跳频信号,并加入了高斯白噪声。最后,我们使用MATLAB自带的`spectrogram`函数进行STFT处理,并将结果以彩色图的形式呈现出来。 请注意,这段代码仅供参考。具体实现方式可能因不同的应用场景而异。

相关推荐

最新推荐

recommend-type

短时傅里叶变换、小波变换、Wigner-Ville分布进行处理语音matlab

请用麦克风录取自己的一段语音信号(2秒),根据自己声音的特点...要求: 1)分别用MATLAB作出短时傅立叶变换、Wigner-Ville分布和小波变换的时频分布图 2)列出公式,画出所有图谱 3) 讨论三种时频分布的结果与特点
recommend-type

短时傅里叶变换matlab程序.doc

通过汉明窗将一串信号进行分解得到不同频率的信号,合成信号验证,主要是在MATLAB中实现,DTFT,可通过控制窗函数的长度和移动幅度来控制频率的分段
recommend-type

数字信号处理-快速傅里叶变换FFT实验报告

西安交通大学数字信号处理-快速傅里叶变换FFT实验报告
recommend-type

数字信号处理实验报告-(2)-离散傅里叶变换(DFT).doc

数字信号处理实验报告-(2)-离散傅里叶变换(DFT),有代码,几乎每行都有注释,高清原图,完全能看得懂的那种
recommend-type

Matlab中快速傅里叶变换FFT结果的物理意义-Matlab中快速傅里叶变换FFT结果的物理意义.doc

Matlab中快速傅里叶变换FFT结果的物理意义-Matlab中快速傅里叶变换FFT结果的物理意义.doc Matlab中快速傅里叶变换FFT结果的物理意义。 小白级解说, 新手可以看看。:lol
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。