torch.optim.SGD(net.parameters(), lr=0.02)
时间: 2023-10-23 07:02:47 浏览: 115
您好!这是一个使用torch.optim.SGD优化器来更新神经网络参数的代码片段。SGD代表随机梯度下降,它是一种常用的优化算法之一。在这个例子中,net是一个神经网络模型,而lr=0.02表示学习率为0.02。通过调用SGD函数并传入net.parameters()和lr参数,可以创建一个SGD优化器对象,用于更新网络的参数。这个优化器将根据每个参数的梯度进行更新,以最小化定义的损失函数。
相关问题
Garment Classifier Below there is a net given, that start to use convolutions to consider the advantages of the spatial structure of images. Test the gradient descent method on this net and compare it.def get_GarmentClassifier(): return nn.Sequential( nn.Conv2d(1, 6, kernel_size=5), nn.ReLU(), nn.MaxPool2d(2,2), nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(), nn.MaxPool2d(2,2), nn.Flatten(), nn.Linear(16 * 4 * 4, 120), nn.ReLU(), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10) ).cuda()帮我根据上面的补全下面的代码net = ... epochs = 10 optimizer = GD(net.parameters(), 0.02) losses, states = ... fig = plot_losses(losses) conf_pltly() init_notebook_mode(connected=False) iplot(fig)
以下是根据提供的代码补全的代码:
```
import torch.nn as nn
import torch.optim as optim
# 定义网络结构
def get_GarmentClassifier():
return nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Conv2d(6, 16, kernel_size=5),
nn.ReLU(),
nn.MaxPool2d(2,2),
nn.Flatten(),
nn.Linear(16 * 4 * 4, 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, 10)
).cuda()
# 初始化网络、优化器和损失函数
net = get_GarmentClassifier()
epochs = 10
optimizer = optim.SGD(net.parameters(), lr=0.02)
loss_fn = nn.CrossEntropyLoss()
# 训练网络
losses = []
states = []
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].cuda(), data[1].cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
losses.append(running_loss/len(trainloader))
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss/len(trainloader)))
# 绘制损失函数曲线
fig = plot_losses(losses)
conf_pltly()
init_notebook_mode(connected=False)
iplot(fig)
```
其中`optim.SGD`是使用随机梯度下降(SGD)方法进行训练,损失函数为交叉熵损失(`nn.CrossEntropyLoss()`)。在训练过程中通过`enumerate`函数遍历`trainloader`中的数据,对网络进行前向传播和反向传播,并使用优化器更新网络参数。最后将每个epoch的平均损失记录到`losses`列表中,并绘制损失函数曲线。
阅读全文