predict_all = np.append(predict_all, predict)
时间: 2024-05-24 20:15:36 浏览: 144
这行代码的作用是将一个新的数组 predict 添加到已有的数组 predict_all 中,并返回一个新的包含所有元素的数组。具体来说,它使用 NumPy 库中的 append 函数,将 predict 数组添加到 predict_all 数组的末尾,并将结果存储在 predict_all 中。最后,将 predict_all 返回。
相关问题
def evaluate(config, model, data_iter, test=False): model.eval() loss_total = 0 predict_all = np.array([], dtype=int) labels_all = np.array([], dtype=int) with torch.no_grad(): for texts, labels in data_iter: outputs = model(texts) loss = F.cross_entropy(outputs, labels) loss_total += loss labels = labels.data.cpu().numpy() predic = torch.max(outputs.data, 1)[1].cpu().numpy() labels_all = np.append(labels_all, labels) predict_all = np.append(predict_all, predic) acc = metrics.accuracy_score(labels_all, predict_all) if test: report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4) confusion = metrics.confusion_matrix(labels_all, predict_all) return acc, loss_total / len(data_iter), report, confusion return acc, loss_total / len(data_iter)
这是一个用于模型评估的函数,输入参数包括配置文件config、模型model、数据迭代器data_iter以及一个布尔值test,表示是否进行测试。函数首先将模型设为评估模式(eval()),然后在数据迭代器上进行循环,对每个文本进行模型预测并计算损失。随后使用Numpy库将真实标签和预测标签存储下来,最后使用Scikit-learn库计算模型的准确率。如果test为True,则同时计算分类报告和混淆矩阵并返回。如果test为False,则只返回准确率和平均损失。
def finallmainmodel1(self,): file=pd.read_csv(self.path) print(file.shape) print(len(file)) for i in range(1, (len(file) //64) + 2): # print(i) if (i *64) < len(file): predict_data = file.values[(i - 1) *64:i *64, 1:] predict_data = torch.from_numpy(predict_data) predict_data = predict_data.float() predict_data = predict_data.view(predict_data.shape[0], 1, 22, 22) predicted = self.predict(predict_data) for i in range(len(predicted)): if predicted[i]==12: self.predicted_all.append(0) else: self.predicted_all.append(1) else: predict_data = file.values[len(file)-64:len(file), 1:] predict_data = torch.from_numpy(predict_data) predict_data = predict_data.float() predict_data = predict_data.view(predict_data.shape[0], 1, 22, 22) predicted = self.predict(predict_data, False) for i in range(len(predicted)): if predicted[i] == 12: self.predicted_all.append(0) else: self.predicted_all.append(1)
这段代码是一个Python类中的一个方法。该方法的作用是从一个CSV文件中读取数据并进行一些处理。首先,使用pandas库中的read_csv方法读取CSV文件。然后,打印数据的维度和长度。接着,使用一个循环对数据进行处理。循环的范围是1到数据长度整除64再整除2之间的数字。在循环中,会根据数据的一部分进行一些特定的计算和操作。
阅读全文