使用torchvision.datasets.ImageFolder生成X_train, X_test, y_train, y_test并保存为data.pkl文件
时间: 2023-11-06 10:14:10 浏览: 88
使用torchvision.datasets.ImageFolder生成数据集并划分为训练集和测试集,可以按照以下步骤实现:
```python
import torchvision.datasets as datasets
from torchvision.transforms import transforms
import joblib
# 数据集路径
data_dir = "path/to/dataset"
# 数据预处理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载数据集
dataset = datasets.ImageFolder(data_dir, transform=transform)
# 划分数据集
train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
# 构造数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
# 获取训练集和测试集的特征和标签
X_train = []
y_train = []
X_test = []
y_test = []
for images, labels in train_loader:
X_train.append(images)
y_train.append(labels)
for images, labels in test_loader:
X_test.append(images)
y_test.append(labels)
X_train = torch.cat(X_train, dim=0)
X_test = torch.cat(X_test, dim=0)
y_train = torch.cat(y_train, dim=0)
y_test = torch.cat(y_test, dim=0)
# 保存数据集
data = {"X_train": X_train, "y_train": y_train, "X_test": X_test, "y_test": y_test}
joblib.dump(data, "data.pkl")
```
这里使用了torchvision.datasets.ImageFolder类加载数据集,使用transforms预处理数据,使用torch.utils.data.random_split函数将数据集随机划分为训练集和测试集,使用torch.utils.data.DataLoader构造数据加载器,最后获取训练集和测试集的特征和标签,并使用joblib库将数据保存为data.pkl文件。需要注意的是,在使用ImageDataFolder类加载数据集时,数据集应该按照类别分为不同的文件夹,并且每个文件夹中包含相应类别的图像。
阅读全文