C语言实现9x9 double矩阵的秩
时间: 2023-12-08 18:05:33 浏览: 87
计算矩阵的秩可以使用高斯-约旦消元法,将矩阵化为简化行阶梯矩阵,然后根据主元的个数来确定秩。具体步骤如下:
1. 将矩阵化为增广矩阵,即添加一列全为0的向量作为右侧的列向量。
2. 对矩阵进行高斯-约旦消元,将矩阵化为简化行阶梯矩阵。
3. 统计矩阵中非零的主元个数,即为矩阵的秩。
以下是C语言实现9x9 double矩阵秩的代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#define ROW 9
#define COL 10
double matrix[ROW][COL] = { {1, 2, 3, 4, 5, 6, 7, 8, 9, 0},
{2, 3, 4, 5, 6, 7, 8, 9, 0, 1},
{3, 4, 5, 6, 7, 8, 9, 0, 1, 2},
{4, 5, 6, 7, 8, 9, 0, 1, 2, 3},
{5, 6, 7, 8, 9, 0, 1, 2, 3, 4},
{6, 7, 8, 9, 0, 1, 2, 3, 4, 5},
{7, 8, 9, 0, 1, 2, 3, 4, 5, 6},
{8, 9, 0, 1, 2, 3, 4, 5, 6, 7},
{9, 0, 1, 2, 3, 4, 5, 6, 7, 8} };
int main() {
int i, j, k, max_row, rank = 0;
double tmp;
for (i = 0; i < ROW - 1; i++) {
max_row = i;
for (j = i + 1; j < ROW; j++) {
if (abs(matrix[j][i]) > abs(matrix[max_row][i])) {
max_row = j;
}
}
if (max_row != i) {
for (k = i; k < COL; k++) {
tmp = matrix[i][k];
matrix[i][k] = matrix[max_row][k];
matrix[max_row][k] = tmp;
}
}
if (matrix[i][i] != 0) {
for (j = i + 1; j < ROW; j++) {
tmp = matrix[j][i] / matrix[i][i];
for (k = i; k < COL; k++) {
matrix[j][k] -= tmp * matrix[i][k];
}
}
}
}
for (i = 0; i < ROW; i++) {
if (matrix[i][i] != 0) {
rank++;
}
}
printf("Matrix rank is %d\n", rank);
return 0;
}
```
输出结果为:
```
Matrix rank is 9
```
说明该矩阵的秩为9。
阅读全文