matlab基于遗传算法的高斯烟雨气体扩散模型代码
时间: 2023-06-14 17:06:55 浏览: 132
气动学基于matlab改进的遗传和粒子群算法高斯烟羽模型模拟气体扩散【含Matlab源码 1061期】.zip
5星 · 资源好评率100%
遗传算法(Genetic Algorithm,简称GA)是一种基于生物进化过程的搜索优化算法,主要用于优化问题的求解。高斯烟雨气体扩散模型是大气环境学中的一个经典问题,通过该模型可以模拟气体在大气中的扩散和传播过程。下面是基于遗传算法的高斯烟雨气体扩散模型的Matlab代码:
```matlab
% GA algorithm for Gaussian plume model
% problem definition
fobj = @(x) gaussian_plume_model(x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9));
nvar = 9; % number of variables
lb = [0.01 1 10 0.01 1 10 0 0 0]; % lower bound of variables
ub = [10 100 1000 10 100 1000 360 360 360]; % upper bound of variables
% GA parameters
pop_size = 100; % population size
max_gen = 100; % maximum number of generations
pc = 0.8; % crossover probability
nc = 2*round(pc*pop_size/2); % number of offsprings (even)
pm = 0.1; % mutation probability
nm = round(pm*pop_size*nvar); % number of mutations
elitism = true; % elitism flag
min_fit = 0; % minimum fitness value for termination
% initialization
pop = repmat(lb, pop_size, 1) + repmat(ub-lb, pop_size, 1).*rand(pop_size, nvar);
fit = zeros(pop_size, 1);
% GA main loop
for gen = 1:max_gen
% evaluation
for i = 1:pop_size
fit(i) = fobj(pop(i, :));
end
% termination
if min(fit) <= min_fit
break;
end
% elitism
if elitism
[best_fit, best_idx] = min(fit);
best_sol = pop(best_idx, :);
end
% selection
fit_scaled = fit - min(fit);
fit_scaled = fit_scaled/sum(fit_scaled);
idx = randsample(1:pop_size, pop_size, true, fit_scaled);
parents = pop(idx, :);
% crossover
offsprings = zeros(nc, nvar);
for k = 1:2:nc
i1 = k;
i2 = k + 1;
if rand() < pc
[offsprings(i1, :), offsprings(i2, :)] = crossover(parents(i1, :), parents(i2, :));
else
offsprings(i1, :) = parents(i1, :);
offsprings(i2, :) = parents(i2, :);
end
end
% mutation
idx = randsample(1:pop_size, nm);
offsprings(idx, :) = mutation(offsprings(idx, :), lb, ub);
% new population
pop = [best_sol; offsprings];
end
% display result
disp(['Best solution: ' num2str(best_sol)]);
disp(['Best fitness: ' num2str(best_fit)]);
% crossover operator
function [c1, c2] = crossover(p1, p2)
nvar = length(p1);
pos = randi(nvar-1) + 1;
c1 = [p1(1:pos) p2(pos+1:end)];
c2 = [p2(1:pos) p1(pos+1:end)];
end
% mutation operator
function offsprings = mutation(offsprings, lb, ub)
nvar = size(offsprings, 2);
for i = 1:nvar
if rand() < 0.5
offsprings(:, i) = offsprings(:, i) + (ub(i) - offsprings(:, i)).*rand(size(offsprings, 1), 1);
else
offsprings(:, i) = offsprings(:, i) - (offsprings(:, i) - lb(i)).*rand(size(offsprings, 1), 1);
end
end
end
% Gaussian plume model
function fval = gaussian_plume_model(x0, y0, z0, u, H, sigY, sigZ, theta, phi)
% constants
k = 0.4; % von Karman constant
g = 9.81; % gravitational acceleration
T = 288; % temperature
rho0 = 1.225; % air density at sea level
p0 = 101325; % atmospheric pressure at sea level
R = 287; % gas constant
alpha = 1.4; % heat capacity ratio
beta = 1/T; % temperature coefficient
% wind speed and direction
uY = u*cosd(theta)*cosd(phi);
uZ = u*sind(theta);
uX = u*cosd(theta)*sind(phi);
% atmospheric stability parameter
L = -H/k;
% effective wind speed and direction
if L > 0 % unstable
uE = u;
thetaE = theta;
phiE = phi;
elseif L < 0 % stable
uStar = k*u/(log(z0/z0));
uE = uStar/log(z0/z0);
thetaE = atan2d(uY, uE);
phiE = atan2d(uX, uE);
else % neutral
uE = u;
thetaE = theta;
phiE = phi;
end
% plume model
f = @(x, y, z) (1/(2*pi*sigY*sigZ))*exp(-(y-y0)^2/(2*sigY^2)-(z-z0)^2/(2*sigZ^2));
integrand = @(x, y, z) f(x, y, z)*uE;
Q = integral3(integrand, -Inf, Inf, -Inf, Inf, 0, H);
C = Q/(2*pi*uE*sigY*sigZ);
rho = rho0*(1-beta*z0)^alpha;
p = p0*(1-beta*z0)^(alpha/(alpha-1));
sigma = sqrt(C/(rho*uE));
fval = 1 - normcdf((x0-uX*z0/uZ)/sigma);
end
```
需要注意的是,以上代码中的`gaussian_plume_model`函数是高斯烟雨气体扩散模型的实现,需要根据具体问题进行修改。另外,遗传算法的参数也需要根据实际情况进行调整,以获得最佳的优化结果。
阅读全文