调用Scikit-learn库中的鸢尾花数据集并显示基本信息; 对鸢尾花数据集进行划分; 对鸢尾花数据集进行数据预处理; 对鸢尾花数据集使用主成分分析进行数据降维;
时间: 2024-06-13 10:08:14 浏览: 101
调用Scikit-learn库中的鸢尾花数据集并显示基本信息:
```python
from sklearn.datasets import load_iris
iris = load_iris()
print(iris.DESCR) # 显示数据集的描述信息
print(iris.feature_names) # 显示特征名称
print(iris.data) # 显示特征数据
print(iris.target) # 显示标签数据
```
对鸢尾花数据集进行划分:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
```
对鸢尾花数据集进行数据预处理:
```python
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
对鸢尾花数据集使用主成分分析进行数据降维:
```python
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train_scaled)
X_test_pca = pca.transform(X_test_scaled)
```
阅读全文