使用PGvector和langchain实现将输入的文本编码并建立索引存入向量数据库,然后输入一个文本问题,从构建好的向量数据库中查出相似性文本,写出代码逻辑
时间: 2024-10-06 16:05:15 浏览: 38
在使用PostgreSQL(PG)的`pg_vector`模块和`langchain`库进行文本编码和向量存储时,你需要先安装必要的库,例如`pg_trgm`用于全文本搜索,以及将`pg_vector`集成到项目中。以下是一个基本的Python示例,展示了如何实现这个过程:
```python
from sqlalchemy import create_engine
import psycopg2
from langchain import Word2VecTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
# 创建数据库连接
engine = create_engine('postgresql://username:password@localhost/dbname')
conn = engine.connect()
# 初始化Word2VecTransformer和TfidfVectorizer
w2v_transformer = Word2VecTransformer(size=100) # 可根据需求调整模型大小
tfidf_vectorizer = TfidfVectorizer()
# 将文本数据加载到内存中并处理
texts = [...] # 从数据库或者其他源获取
text_vectors = w2v_transformer.fit_transform(texts)
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
# 将编码后的文本和TF-IDF特征保存到向量表
pg_table_name = "vector_table"
with conn.begin() as connection:
for i, (vector, text) in enumerate(zip(tfidf_matrix, texts)):
pg_query = f"INSERT INTO {pg_table_name} (text_idf, vector) VALUES ({i}, %s)"
connection.execute(pg_query, (vector.todense(),))
# 对新输入的问题进行编码和查询相似文本
input_question = "your input question here"
input_vector = w2v_transformer.transform([input_question])
similarity_query = f"""
SELECT * FROM {pg_table_name}
WHERE similarity(vector, %s) > 0.5
"""
with conn.cursor() as cursor:
cursor.execute(similarity_query, (input_vector,))
similar_texts = cursor.fetchall()
# 打印相似的文本结果
for text_id, _, similarity_score in similar_texts:
print(f"问题 '{input_question}' 的相似度较高的文本: {texts[text_id]} (相似度: {similarity_score})")
阅读全文