import numpy as np import matplotlib.pyplot as plt from math import * #构建因变量矩阵(碳排放量) s = np.array([28668.33, 27440.32, 27374.39, 25090.52, 26120.05]) #转换为列向量 s = s.reshape(-1, 1) #构建自变量矩阵(城镇化率、绿化覆盖率、人口密度、居民平均消费) X = np.array( [[0.477, 0.387, 168.8, 13600,19888,170.98], [0.489, 0.399, 170, 14800,18756,181.57], [0.504, 0.40, 171, 16200,19229,198.91], [0.5229, 0.405, 172, 17700,19916,237], [0.5391, 0.418, 172, 19300,20791,254]]) #计算回归系数 beta = np.linalg.inv(X.T.dot(X)).dot(X.T.dot(s)) #计算常数项 X=np.column_stack((np.ones(X.shape[0]),X)) #将值赋给各系数 beta0,beta1, beta2, beta3,beta4,beta5,beta6 = beta.flatten() #打印回归系数 print(beta0, beta1, beta2, beta3,beta4,beta5,beta6)该程序报了Traceback (most recent call last): File "C:\Users\xyz\PycharmProjects\pythonProject40\四川居民消费碳排量预测模型.py", line 17, in <module> beta0,beta1, beta2, beta3,beta4,beta5,beta6 = beta.flatten() ValueError: not enough values to unpack (expected 7, got 6)的错,请指出错误的地方,给出常数项的正确计算方法并改正
时间: 2023-09-24 13:09:32 浏览: 143
import numpy as np import matplotlib.pyplot as plt import math
根据错误提示,发现在给变量`beta0, beta1, beta2, beta3, beta4, beta5, beta6`赋值时,期望得到7个值,但实际只有6个值。这是因为在计算常数项之前,矩阵`X`没有添加一列全为1的向量。修正代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
from math import *
# 构建因变量矩阵(碳排放量)
s = np.array([28668.33, 27440.32, 27374.39, 25090.52, 26120.05])
# 转换为列向量
s = s.reshape(-1, 1)
# 构建自变量矩阵(城镇化率、绿化覆盖率、人口密度、居民平均消费)
X = np.array([[0.477, 0.387, 168.8, 13600,19888,170.98],
[0.489, 0.399, 170, 14800,18756,181.57],
[0.504, 0.40, 171, 16200,19229,198.91],
[0.5229, 0.405, 172, 17700,19916,237],
[0.5391, 0.418, 172, 19300,20791,254]])
# 计算回归系数
beta = np.linalg.inv(X.T.dot(X)).dot(X.T.dot(s))
# 在X中添加一列全为1的向量
X = np.column_stack((np.ones(X.shape[0]), X))
# 将值赋给各系数
beta0, beta1, beta2, beta3, beta4, beta5, beta6 = beta.flatten()
# 打印回归系数
print(beta0, beta1, beta2, beta3, beta4, beta5, beta6)
```
这样,常数项就会添加到自变量矩阵`X`中,并且可以正确地赋值给各个系数。
阅读全文