matlab中pca函数的用法
时间: 2024-06-16 09:04:10 浏览: 72
pca matlab函数代码
在MATLAB中,PCA(Principal Component Analysis)函数用于执行主成分分析。成分分析是一种常用的降维技术,它可以将高维数据转换为低维数据,同时保留数据的主要特征。
MATLAB中的PCA函数使用如下:
[pca_coeff, pca_score, pca_latent, pca_tsquared, pca_explained] = pca(data)
其中,参数data是一个m×n的矩阵,表示m个样本的n个特征。函数返回的结果包括:
1. pca_coeff:主成分系数矩阵,大小为n×n。每一列代表一个主成分,按照重要性递减排列。
2. pca_score:得分矩阵,大小为m×n。每一行代表一个样本在主成分上的投影。
3. pca_latent:特征值向量,大小为n×1。表示每个主成分的方差。
4. pca_tsquared:样本的Hotelling's T^2统计量,大小为m×1。用于检测异常值。
5. pca_explained:解释方差百分比向量,大小为n×1。表示每个主成分解释的方差百分比。
阅读全文