鲸鱼算法matlab程序
时间: 2023-10-06 08:08:27 浏览: 89
基于matlab的鲸鱼算法(WOA)
以下是一个简单的鲸鱼算法的 Matlab 实现。在这个例子中,我们尝试最小化一个已知函数的值。请注意,这个程序只是一个示例,您需要根据自己的要求进行修改。
```matlab
function [best, fmin] = whale_algorithm(max_iter, dim, lb, ub, fobj)
% Whale algorithm implementation in Matlab
% Inputs:
% max_iter: Maximum number of iterations
% dim: Number of dimensions
% lb: Lower bound of search space
% ub: Upper bound of search space
% fobj: Objective function to minimize
% Outputs:
% best: Best solution found
% fmin: Best objective function value found
% Initialize population
pop_size = 30;
X = zeros(pop_size, dim);
for i = 1:pop_size
X(i,:) = lb + (ub - lb) .* rand(1, dim);
end
% Initialize best solution
fX = feval(fobj, X');
[fmin, idx] = min(fX);
best = X(idx,:);
% Main loop
for t = 1:max_iter
% Update position of whales
a = 2 - t * (2 / max_iter); % Eq. (2.3)
a2 = -1 + t * ((-1) / max_iter); % Eq. (2.4)
for i = 1:pop_size
r1 = rand(); % r1 is a random number in [0,1]
r2 = rand(); % r2 is a random number in [0,1]
A = 2 * a * r1 - a; % Eq. (2.1)
C = 2 * r2; % Eq. (2.2)
b = 1; % parameters in Eq. (2.5)
l = (a2 - 1) * rand() + 1; % Eq. (2.5)
p = rand(); % p in Eq. (2.6)
if p < 0.5
if abs(A) >= 1
rand_leader_idx = floor(pop_size * rand() + 1);
X_rand = X(rand_leader_idx, :);
D_X_rand = abs(C * X_rand - X(i, :)); % Eq. (2.7)
X(i, :) = X_rand - A * D_X_rand; % Eq. (2.8)
else
D_best = abs(C * best - X(i, :)); % Eq. (2.1)
X(i, :) = best - A * D_best; % Eq. (2.3)
end
else
distance_to_leader = abs(best - X(i, :));
X(i, :) = distance_to_leader * exp(b * l) .* cos(2 * pi * l) + best; % Eq. (2.5)
end
end
% Apply boundary constraints
X(X < lb) = lb;
X(X > ub) = ub;
% Update best solution
fX = feval(fobj, X');
[fmin_new, idx] = min(fX);
if fmin_new < fmin
best = X(idx,:);
fmin = fmin_new;
end
% Display progress
disp(['Iteration ' num2str(t) ', Best objective function value = ' num2str(fmin)]);
end
end
```
在这个示例中,我们定义了一个需要最小化的目标函数,并将其传递给鲸鱼算法。在每次迭代中,算法更新每个鲸鱼的位置,并根据当前位置更新最佳解决方案。算法还对搜索空间进行了边界约束,确保每个鲸鱼的位置都在定义的搜索范围内。
您可以使用以下代码来运行这个示例:
```matlab
% Define objective function to minimize
fobj = @(x) sum(x.^2);
% Define search space bounds
lb = -5;
ub = 5;
% Run whale algorithm
max_iter = 100;
dim = 10;
[best, fmin] = whale_algorithm(max_iter, dim, lb, ub, fobj);
```
在这个例子中,我们最小化了一个简单的二次函数,并将搜索空间限制在 -5 和 5 之间。您可以根据自己的需求修改这些参数。
阅读全文