优化以上的apriori算法代码
时间: 2023-07-05 10:26:46 浏览: 137
以下是一个优化后的 Apriori 算法的 MATLAB 代码示例,主要是通过矩阵运算和向量化操作来提高计算效率:
```
function [freqItemsets, associationRules] = apriori(transactions, minSupp, minConf)
% transactions: 事务数据,每行为一个事务,每列为一种商品
% minSupp: 最小支持度
% minConf: 最小置信度
% freqItemsets: 频繁项集
% associationRules: 关联规则
% 转换为二进制矩阵
binTrans = double(transactions > 0);
% 初始化频繁一项集
nItems = size(transactions, 2);
freqItemsets = arrayfun(@(x) {x}, 1:nItems);
% 迭代生成频繁项集
while ~isempty(freqItemsets)
% 计算支持度
itemsetSizes = cellfun(@length, freqItemsets);
maxItemsetSize = max(itemsetSizes);
itemsetMasks = false(size(freqItemsets, 1), nItems, maxItemsetSize);
for i = 1:size(freqItemsets, 1)
itemsetMasks(i, freqItemsets{i}, itemsetSizes(i)) = true;
end
itemsetCounts = squeeze(all(all(binTrans(:, :, ones(1, maxItemsetSize)) == itemsetMasks, 2), 3));
supp = sum(itemsetCounts, 1) / size(transactions, 1);
% 保留支持度大于 minSupp 的项集
freqIdx = supp >= minSupp;
freqItemsets = freqItemsets(freqIdx);
supp = supp(freqIdx);
% 生成下一轮候选项集
newFreqItemsets = {};
for i = 1:length(freqItemsets)
for j = i+1:length(freqItemsets)
itemset1 = freqItemsets{i};
itemset2 = freqItemsets{j};
if length(itemset1) == length(itemset2) && all(itemset1 == itemset2)
continue;
end
newItemset = unique([itemset1, itemset2]);
if length(newItemset) > length(itemset1) + 1
continue;
end
if any(all(newItemset == cat(2, freqItemsets{:}), 2))
continue;
end
newFreqItemsets{end+1} = newItemset;
end
end
% 更新候选项集
freqItemsets = newFreqItemsets;
end
% 生成关联规则
allItemsets = cat(2, freqItemsets{:});
associationRules = [];
for i = 1:length(allItemsets)
antecedent = setdiff(allItemsets, allItemsets(i));
antecedentIdx = all(binTrans(:, antecedent), 2);
consequentIdx = binTrans(:, allItemsets(i));
conf = sum(consequentIdx & antecedentIdx) / sum(antecedentIdx);
if conf >= minConf
associationRules(end+1) = struct('antecedent', antecedent, 'consequent', allItemsets(i), 'confidence', conf);
end
end
end
```
该代码实现了一个更高效的 Apriori 算法,使用了矩阵运算和向量化操作来提高计算速度。
阅读全文