assign din[31:0]=32'hFF00_ABC4;assign dout[31:0]=(din<2)>4. dou的值是多少?

时间: 2024-02-26 09:54:38 浏览: 16
根据题目,`assign din[31:0]=32'hFF00_ABC4` 将 `din` 的值赋为 `32'hFF00_ABC4`,即 `din` 的二进制表示为 `1111 1111 0000 0000 1010 1011 1100 0100`。 接着,`assign dout[31:0]=(din<2)>4` 进行逻辑运算,将 `din` 的前两位 `11` 进行比较,得到结果为 `0`,因为 `11` 并不大于 `4`。因此,`dout` 的二进制表示为 `1111 1111 0000 0000 1010 1011 1100 0100`,与 `din` 的值相同。 因此,`dout` 的值也为 `32'hFF00_ABC4`。
相关问题

module test_bench (clk, data ); output clk; reg clk1; output data; wire data; wire [31:0] data_in; assign data_in = 32'h000fff00; reg [5:0] addr; reg clk_en; assign clk= clk1&clk_en&!addr[5]; initial begin clk1=1'b0; //data=1'b0; addr=5'b0; clk_en=1'b0; #2000 clk_en=1'b1; #100000 $finish; end always #50 clk1=~clk1; always @ (posedge clk ) begin addr <= addr+1; end assign data= data_in[addr[4:0]]; /*always @ (posedge clk) begin case(addr[4:0]) 5'd0: data <= data_in[31]; 5'd1: data <= data_in[30]; 5'd2: data <= data_in[29]; 5'd3: data <= data_in[28]; 5'd4: data <= data_in[27]; 5'd5: data <= data_in[26]; 5'd6: data <= data_in[25]; 5'd7: data <= data_in[24]; 5'd8: data <= data_in[23]; 5'd9: data <= data_in[22]; 5'd10: data <= data_in[21]; 5'd11: data <= data_in[20]; 5'd12: data <= data_in[19]; 5'd13: data <= data_in[18]; 5'd14: data <= data_in[17]; 5'd15: data <= data_in[16]; 5'd16: data <= data_in[15]; 5'd17: data <= data_in[14]; 5'd18: data <= data_in[13]; 5'd19: data <= data_in[12]; 5'd20: data <= data_in[11]; 5'd21: data <= data_in[10]; 5'd22: data <= data_in[9]; 5'd23: data <= data_in[8]; 5'd24: data <= data_in[7]; 5'd25: data <= data_in[6]; 5'd26: data <= data_in[5]; 5'd27: data <= data_in[4]; 5'd28: data <= data_in[3]; 5'd29: data <= data_in[2]; 5'd30: data <= data_in[1]; 5'd31: data <= data_in[0]; default: data <= 1'b0; endcase end */ endmodule

这段代码实现了一个简单的 Verilog testbench,用于测试某个模块。模块的输入是一个时钟信号 clk 和一个数据信号 data。在 testbench 中,时钟信号 clk 被定义为输出,数据信号 data 被定义为输出。同时,也定义了一个 32 位宽度的数据线 data_in,用于存储输入数据。该模块的功能是按顺序输出 data_in 中的数据,直到所有的数据都被输出完毕。 在 testbench 中,时钟 clk1 通过 always 块以 50 个时钟周期的间隔进行翻转。同时,addr 初始值为 0,clk_en 初始值为 0。当时钟信号 clk_en 被设置为 1 时,addr 以每个时钟周期加 1 的方式递增,直到 addr 的最高位(即 addr[5])为 1,表明所有的数据都已被读取。在每个时钟上升沿时,data 被赋值为 data_in 中对应地址的数据。在这里,使用了 assign 语句实现了这个功能。 注释掉的代码块是一种不同的实现方式,使用了 case 语句来对每个地址进行显式的分配。这种方法不如 assign 语句方便和简单,但也可以实现相同的功能。

将下面的verilog文件改成VHDL文件“ module Time_sample( input i_clk , input i_rst , input i_ADC_clk , input [9:0] i_ADC , output o_ADC_valid , output[9:0] o_ADC ); parameter SAMPLE_TIME = 2000000000 ; parameter CLK_TIME = 20 ; parameter SIMPLE_CNT_NUM = SAMPLE_TIME/CLK_TIME ; wire [9:0] w_sync_ADC_data; wire w_empty ; sync_fifo sync_fifo_inst ( .wr_clk( i_ADC_clk ), .wr_rst( i_rst ), .rd_clk( i_clk ), .rd_rst( i_rst ), .din ( i_ADC ), .wr_en ( 1'b1 ), .rd_en ( 1'b1 ), .dout ( w_sync_ADC_data ), .full ( ), .empty ( w_empty ) ); reg [31:0] r_simple_cnt = 32'd0; always @(posedge i_clk)begin if(i_rst == 1'b1) r_simple_cnt <= 32'd0; else if(r_simple_cnt >= SIMPLE_CNT_NUM - 1'b1) r_simple_cnt <= 32'd0; else r_simple_cnt <= r_simple_cnt + 1'b1; end wire w_sample_en = (r_simple_cnt == SIMPLE_CNT_NUM - 1'b1); reg [7:0] r_ADC_data = 8'd0; reg r_ADC_valid = 1'd0 ; always @(posedge i_clk)begin if(i_rst == 1'b1)begin r_ADC_data <= 8'd0; r_ADC_valid <= 1'd0 ; end else if(w_sample_en)begin r_ADC_data <= w_sync_ADC_data; r_ADC_valid <= 1'b1; end else r_ADC_valid <= 1'b0; end assign o_ADC_valid = r_ADC_valid ; assign o_ADC = r_ADC_data ; endmodule ”

下面是将verilog文件改成VHDL文件后的代码: ```vhdl library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity Time_sample is port ( i_clk : in std_logic; i_rst : in std_logic; i_ADC_clk : in std_logic; i_ADC : in std_logic_vector(9 downto 0); o_ADC_valid : out std_logic; o_ADC : out std_logic_vector(9 downto 0) ); end entity; architecture rtl of Time_sample is constant SAMPLE_TIME : integer := 2000000000; constant CLK_TIME : integer := 20; constant SIMPLE_CNT_NUM : integer := SAMPLE_TIME/CLK_TIME; signal w_sync_ADC_data : std_logic_vector(9 downto 0); signal w_empty : std_logic; component sync_fifo is port ( wr_clk : in std_logic; wr_rst : in std_logic; rd_clk : in std_logic; rd_rst : in std_logic; din : in std_logic_vector(9 downto 0); wr_en : in std_logic; rd_en : in std_logic; dout : out std_logic_vector(9 downto 0); full : out std_logic; empty : out std_logic ); end component; signal r_simple_cnt : unsigned(31 downto 0) := (others => '0'); signal r_ADC_data : std_logic_vector(7 downto 0) := (others => '0'); signal r_ADC_valid : std_logic := '0'; begin sync_fifo_inst : sync_fifo port map ( wr_clk => i_ADC_clk, wr_rst => i_rst, rd_clk => i_clk, rd_rst => i_rst, din => i_ADC, wr_en => '1', rd_en => '1', dout => w_sync_ADC_data, full => open, empty => w_empty ); process (i_clk) begin if rising_edge(i_clk) then if i_rst = '1' then r_simple_cnt <= (others => '0'); elsif r_simple_cnt >= SIMPLE_CNT_NUM - 1 then r_simple_cnt <= (others => '0'); else r_simple_cnt <= r_simple_cnt + 1; end if; end if; end process; process (i_clk) begin if rising_edge(i_clk) then if i_rst = '1' then r_ADC_data <= (others => '0'); r_ADC_valid <= '0'; elsif r_simple_cnt = SIMPLE_CNT_NUM - 1 then r_ADC_data <= w_sync_ADC_data(7 downto 0); r_ADC_valid <= '1'; else r_ADC_valid <= '0'; end if; end if; end process; o_ADC_valid <= r_ADC_valid; o_ADC <= r_ADC_data & w_sync_ADC_data(8 downto 0); end architecture; ``` 在VHDL中,需要使用`library`和`use`语句来导入需要使用的库和包。此外,VHDL中没有`wire`类型,需要使用`signal`来声明信号。VHDL中的`if`语句和Verilog中的`if`语句语法有所不同,需要使用`process`语句来实现。VHDL中的赋值语句使用`<=`符号。最后,需要使用`&`符号来实现连接操作。

相关推荐

讲下面代码分部分讲解//数码管显示 module seg_driver( input clk , input rst_n , input [31:0]data,//待显示的数据 output wire[7:0] sel , output wire[7:0] seg ); //wire [31:0]data; // assign dig_seg = 8'd0; // assign dig_sel = 1'b0; reg [7:0] dig_sel; reg [7:0] dig_seg; localparam NUM_0 = 8'hC0, NUM_1 = 8'hF9, NUM_2 = 8'hA4, NUM_3 = 8'hB0, NUM_4 = 8'h99, NUM_5 = 8'h92, NUM_6 = 8'h82, NUM_7 = 8'hF8, NUM_8 = 8'h80, NUM_9 = 8'h90, NUM_A = 8'h88, NUM_B = 8'h83, NUM_C = 8'hC6, NUM_D = 8'hA1, NUM_E = 8'h86, NUM_F = 8'h8E, LIT_ALL = 8'h00, BLC_ALL = 8'hFF; parameter CNT_REF = 25'd1000; reg [9:0] cnt_20us; //20us计数器 reg [3:0] data_tmp; //用于取出不同位选的显示数据 // assign data = 32'hABCD_4413; //描述位选信号切换 //描述刷新计数器 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin cnt_20us <= 25'd0; end else if(cnt_20us >= CNT_REF - 25'd1)begin cnt_20us <= 25'd0; end else begin cnt_20us <= cnt_20us + 25'd1; end end always@(posedge clk or negedge rst_n)begin if(!rst_n)begin dig_sel <= 8'hfe;//8'b1111_1110 end else if(cnt_20us >= CNT_REF - 25'd1)begin dig_sel <= {dig_sel[6:0],dig_sel[7]}; end else begin dig_sel <= dig_sel; end end assign sel = dig_sel; //段选信号描述 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin data_tmp <= 4'd0; end else begin case(sel) 8'b1111_1110:data_tmp <= data[ 3-:4]; 8'b1111_1101:data_tmp <= data[ 7-:4]; 8'b1111_1011:data_tmp <= data[11-:4]; 8'b1111_0111:data_tmp <= data[15-:4]; 8'b1110_1111:data_tmp <= data[19-:4]; 8'b1101_1111:data_tmp <= data[23-:4]; 8'b1011_1111:data_tmp <= data[27-:4]; 8'b0111_1111:data_tmp <= data[31-:4]; default: data_tmp <= 4'hF; endcase end end always@(posedge clk or negedge rst_n)begin if(!rst_n)begin dig_seg <= BLC_ALL; end else begin case(data_tmp) 4'h0 : dig_seg <= NUM_0; 4'h1 : dig_seg <= NUM_1; 4'h2 : dig_seg <= NUM_2; 4'h3 : dig_seg <= NUM_3; 4'h4 : dig_seg <= NUM_4; 4'h5 : dig_seg <= NUM_5; 4'h6 : dig_seg <= NUM_6; 4'h7 : dig_seg <= NUM_7; 4'h8 : dig_seg <= NUM_8; 4'h9 : dig_seg <= NUM_9; 4'hA : dig_seg <= NUM_A; 4'hB : dig_seg <= NUM_B; 4'hC : dig_seg <= NUM_C; 4'hD : dig_seg <= NUM_D; 4'hE : dig_seg <= NUM_E; 4'hF : dig_seg <= NUM_F; default: ; endcase end end assign seg = dig_seg ; endmodule

module seg_decode( input wire clk, input wire rst_n, input wire [4:0] seg_value_1, input wire [4:0] seg_value_2, output reg [5:0] sel, output reg [7:0] seg ); parameter CNT_20US = 10'd999; reg [3:0] number; wire [2:0] change_l; wire [2:0] change_h; reg [9:0] cnt; //计时模块 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin cnt <= 10'd0; end else if(cnt == CNT_20US)begin cnt <= 10'd0; end else begin cnt <= cnt + 10'd1; end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin sel <= 6'b011111; end else if(cnt == CNT_20US)begin sel <= {sel[0],sel[5:1]}; end else begin sel <= sel; end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin number <= 4'd0; end else begin case(sel) 6'b011111: number <= seg_value_1 % 10; 6'b101111: number <= seg_value_1 / 10; 6'b110111: number <= seg_value_2 % 10; 6'b111011: number <= seg_value_2 / 10; 6'b111101: begin if(seg_value_2 < seg_value_1) number <= 4'd15; else number <= change_l; end 6'b111110: begin if(seg_value_2 < seg_value_1) number <= 4'd14; else number <= change_h; end default:number <= 4'd0; endcase end end always @(posedge clk or negedge rst_n) begin if(!rst_n)begin seg <= 8'b1100_0000; end else begin case(number) 4'd0: seg <= 8'b1100_0000; 4'd1: seg <= 8'b1111_1001; 4'd2: seg <= 8'b1010_0100; 4'd3: seg <= 8'b1011_0000; 4'd4: seg <= 8'b1001_1001; 4'd5: seg <= 8'b1001_0010; 4'd14: seg <= 8'b1000_0110; 4'd15: seg <= 8'b1100_1110; default:seg <= 8'b1100_0000; endcase end end assign change_l = (seg_value_2 - seg_value_1) % 10; assign change_h = (seg_value_2 - seg_value_1) / 10; sel_drive sel_drive_u ( .clk (clk), .rst_n (rst_n), .sel_2 () ); endmodule

module xianshiqi( input clk , input rst_n , input [23:0]data,//待显示的数据 output wire[7:0] sel , output wire[7:0] seg ); //wire [24:0]data; // assign dig_seg = 8'd0; // assign dig_sel = 1'b0; reg [7:0] dig_sel; reg [7:0] dig_seg; localparam NUM_0 = 8'hC0, NUM_1 = 8'hF9, NUM_2 = 8'hA4, NUM_3 = 8'hB0, NUM_4 = 8'h99, NUM_5 = 8'h92, NUM_6 = 8'h82, NUM_7 = 8'hF8, NUM_8 = 8'h80, NUM_9 = 8'h90, NUM_A = 8'h88, NUM_B = 8'h83, NUM_C = 8'hC6, NUM_D = 8'hA1, NUM_E = 8'h86, NUM_F = 8'h8E, LIT_ALL = 8'h00, BLC_ALL = 8'hFF; parameter CNT_REF = 25'd1000; reg [9:0] cnt_20us; //20us计数器 reg [3:0] data_tmp; //用于取出不同位选的显示数据 // assign data = 32'hABCD_4413; //描述位选信号切换 //描述刷新计数器 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin cnt_20us <= 25'd0; end else if(cnt_20us >= CNT_REF - 25'd1)begin cnt_20us <= 25'd0; end else begin cnt_20us <= cnt_20us + 25'd1; end end always@(posedge clk or negedge rst_n)begin if(!rst_n)begin dig_sel <= 8'hfe;//8'b1111_1110 end else if(cnt_20us >= CNT_REF - 25'd1)begin dig_sel <= {dig_sel[6:0],dig_sel[7]}; end else begin dig_sel <= dig_sel; end end assign sel = dig_sel; //段选信号描述 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin data_tmp <= 4'd0; end else begin case(sel) 6'b11_1110:data_tmp <= data[ 3-:4]; 6'b11_1101:data_tmp <= data[ 7-:4]; 6'b11_1011:data_tmp <= data[11-:4]; 6'b11_0111:data_tmp <= data[15-:4]; 6'b10_1111:data_tmp <= data[19-:4]; 6'b01_1111:data_tmp <= data[23-:4]; default: data_tmp <= 4'hF; endcase end end always@(posedge clk or negedge rst_n)begin if(!rst_n)begin dig_seg <= BLC_ALL; end else begin case(data_tmp) 4'h0 : dig_seg <= NUM_0; 4'h1 : dig_seg <= NUM_1; 4'h2 : dig_seg <= NUM_2; 4'h3 : dig_seg <= NUM_3; 4'h4 : dig_seg <= NUM_4; 4'h5 : dig_seg <= NUM_5; 4'h6 : dig_seg <= NUM_6; 4'h7 : dig_seg <= NUM_7; 4'h8 : dig_seg <= NUM_8; 4'h9 : dig_seg <= NUM_9; 4'hA : dig_seg <= NUM_A; 4'hB : dig_seg <= NUM_B; 4'hC : dig_seg <= NUM_C; 4'hD : dig_seg <= NUM_D; 4'hE : dig_seg <= NUM_E; 4'hF : dig_seg <= NUM_F; default: ; endcase end end assign seg = dig_seg ; endmodule

timescale 1n/1ps module shiyan3( input clk, input rst, output seg_pi, output [7:0] seg_data ); reg[31:0]time_cnt; reg[7:0]num_cnt; always@(posedge clk or negedge rst) begin if(rst==1'b0) begin time_cnt<=32'd0; end else if(time_cnt==32'd49_000_000) begin time_cnt<=0; if(num_cnt==8'd10) begin num_cnt<=0; end else begin num_cnt<=num_cnt+1; end end else begin time_cnt<=time_cnt+32'd1; end end reg[7:0] seg_get_data; always@(posedge clk) begin if(num_cnt==8'd0) begin seg_get_data<=8'b1100_0000; end else if(num_cnt==8'd1) begin seg_get_data<=8'b1111_1001; end else if(num_cnt==8'd2) begin seg_get_data<=8'b1010_0100; end else if(num_cnt==8'd3) begin seg_get_data<=8'b1011_0000; end else if(num_cnt==8'd4) begin seg_get_data<=8'b1001_1001; end else if(num_cnt==8'd5) begin seg_get_data<=8'b1001_0010; end else if(num_cnt==8'd6) begin seg_get_data<=8'b1000_0010; end else if(num_cnt==8'd7) begin seg_get_data<=8'b1111_1000; end else if(num_cnt==8'd8) begin seg_get_data<=8'b1000_0000; end else if(num_cnt==8'd9) begin seg_get_data<=8'b1001_0000; end end assign seg_data=seg_get_data; endmodule 上述代码只能实现一位十进制的数字时钟,参考以上代码要求根据cyclone IV E 的FPGA实验板功能,设计四位数码管显示的数字时钟;要求:数字时钟能够准确计时并显示;开机显示00;具备控制功能按键有3个:清零、暂停、计时开始。数码管片四个选接口:DIG1,DIG2,DIG3,DIG4,数码管八个段选接口:SEG0,SEG1,SEG2,SEG3,SEG4,SEG5,SEG6,SEG7,给出Verilog代码

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。