【华泰金工】人工智能42:图神经网络选股与qlib实践.pdf 
时间: 2023-06-05 16:02:24 浏览: 51
本篇文章介绍了华泰金工基于图神经网络(Graph Neural Network,简称GNN)和QLib平台实现的选股策略研究。文章首先介绍了GNN的基本概念和原理,特别是GNN的适用场景和优势,即可以处理复杂非线性的关系和模式,可以结合节点嵌入和属性特征进行深度学习和预测。然后文章介绍了股票市场中的投资策略和指标,如技术指标和基本面指标,以及如何用GNN建模和优化。
接下来,文章详细介绍了QLib平台的特点和功能,以及如何将GNN和QLib结合起来进行选股实战。文章描述了一系列的实验和结果,例如基于GNN的节点分类和链接预测模型,以及基于QLib的数据处理和回测模块。文章指出,GNN可以有效地捕捉股票市场中不同股票之间的关联和影响,能够提高选股的准确率和收益率,但也需要合理的数据和参数调整来避免过拟合和欠拟合问题。
总的来说,本篇文章介绍了一种新的选股策略,即基于GNN和QLib的深度学习和回测框架。这种策略有一定的理论基础和实践经验,并具有一定的创新性和应用价值。然而,这种策略也面临着一系列的挑战和限制,例如数据稀疏性、模型复杂度、交易成本等问题。因此,这种策略需要进一步的研究和改进,才能够在实际股票投资中得到更好的效果和表现。
相关问题
卷积神经网络的评价_金工研报:利用卷积神经网络进行多因子选股
卷积神经网络的评价通常可以从以下几个方面来考虑:
1. 准确率:卷积神经网络在分类、识别等任务中的准确率是评价其性能的重要指标。通常使用混淆矩阵、ROC曲线、精确率-召回率曲线等来评价模型的准确率。
2. 训练速度:卷积神经网络的训练速度也是一个重要的评价指标,尤其是在大规模数据集和深度网络上训练的时候。通常可以使用训练时间、收敛速度等来评价其训练速度。
3. 鲁棒性:卷积神经网络在面对噪声、变形、遮挡等情况时的表现也是评价其性能的重要指标之一。通常可以使用对抗样本、数据增强等方法来评价其鲁棒性。
4. 可解释性:卷积神经网络在特征提取、分类等任务中的可解释性也是一个重要的评价指标。通常可以使用可视化、梯度图等方法来评价其可解释性。
以上是卷积神经网络评价的一些方面,不同的任务和应用场景可能会有不同的评价指标。
如何学习量化投资,进入券商金工项目
量化投资具有很高的技术门槛,因此建议你先了解一些基本概念,如量化投资的原理、量化策略的分析方法、金融数据的获取以及技术指标的应用。此外,你还可以参加一些金融类的培训课程,学习量化投资的专业知识,掌握一些量化投资的实践技巧,以及实战经验,从而更好地进入券商金工项目。
相关推荐



