R的属性依赖集为{A,B,C,D},函数依赖集F={B->D,AB->C},求该关系模式最高属于第几范式

时间: 2023-06-02 12:05:48 浏览: 56
根据规范化理论,关系模式最高属于第三范式(3NF)需要满足以下两个条件: 1. 每个非主属性都不能依赖于其他非主属性,即消除传递依赖; 2. 每个非主属性都必须直接依赖于候选键,即消除部分依赖。 对于题目给出的关系模式,非主属性为BCD,候选键为AB。根据函数依赖集F可得BCD不存在传递依赖,已经满足第一个条件。但是BD依赖于B,不满足第二个条件。因此需要将关系模式进行拆分为R1(BD)和R2(ABC),然后R1满足第二范式,R2也满足第二范式。故最高属于第三范式(3NF)。
相关问题

函数依赖集Fr={A->BC,B->D},主键是哪个

我理解您的问题是,给定一个函数依赖集Fr={A->BC,B->D},要求求出主键。根据主键的定义,主键是一个或多个属性的集合,可以唯一确定一个关系表中的每一条记录。因此,我们需要确定一个能够唯一确定每一条记录的属性集合。 根据函数依赖集,A能够唯一确定BC,B能够唯一确定D,因此AB均为侯选主键。但是,如果我们选取B作为主键,由于A->BC的存在,A依赖于B,因此A不满足关系模型中属性的不可分性原则。因此,我们只能选择AB作为主键。

给定关系模式R<U,F> U=(A, B,C, D,E),F=(AB->C, B->D, C->E,CE->B,AC->B),求R的候选键,判断范式级别,分解成3NF,要求保持函数依赖

首先,我们需要找出R的超码,超码指的是可以唯一标识一条记录的属性组合,也就是R的候选键。 根据函数依赖理论,对于一张关系表R,所有属性的组合都可以用来唯一标识一条记录,只需要满足以下两个条件之一即可: 1. 该属性组合是R的超码; 2. 该属性组合可以通过R的某些函数依赖推导出R的超码。 根据题目中给出的函数依赖集合F,我们可以通过消元法求出R的超码: AB->C B->D C->E CE->B AC->B 我们可以先看一下AC是不是R的超码,如果AC是R的超码,那么我们就不需要再找其他的超码了。如果AC不是R的超码,那么我们需要继续寻找其他的超码。 我们先看AC->B,因为AC是一个二元组,所以它不可能成为R的超码。那么我们可以继续看其他的函数依赖: AB->C B->D C->E CE->B 对于这四个函数依赖,我们可以发现它们的左部都只有两个属性,所以它们也不可能成为R的超码。因此,我们需要继续找其他的超码。 我们来看一下CE->B,我们可以通过CE->B和C->E推导出CE->E,然后再加上AB->C和C->E,就可以得到ABCE->E。因此,ABCE是R的一个超码。 因此,R的候选键为ABCE。 接下来,我们来判断R的范式级别。 根据定义,如果一个关系表R满足以下条件之一,那么它就是第一范式(1NF): 1. R中的所有属性都是原子的,即不可再分; 2. R中每个属性都是不可再分的基本数据类型,如整数、字符串等。 根据题目中给出的关系模式R,我们可以发现R满足第一范式,因为它的所有属性都是原子的。 如果一个关系表R满足以下条件之一,那么它就是第二范式(2NF): 1. R是第一范式; 2. R的每个非主属性都完全依赖于R的某个候选键。 根据题目中给出的函数依赖集合F,我们可以发现R满足第二范式,因为每个非主属性都完全依赖于候选键ABCE。 如果一个关系表R满足以下条件之一,那么它就是第三范式(3NF): 1. R是第二范式; 2. R的每个非主属性都不传递依赖于R的任何候选键。 根据题目中给出的函数依赖集合F,我们可以发现R不满足第三范式,因为CE->B,CE是候选键的一部分,但B不是候选键的一部分,因此存在传递依赖。为了使R满足第三范式,我们需要对R进行分解。 我们可以使用合成法将R分解成满足第三范式的多个关系表。具体步骤如下: 1. 将R中所有不满足第三范式的函数依赖分离出来,得到一个关系表R1; 2. 将R1中的主键和函数依赖中的冗余部分剥离,得到一个关系表R2。 根据题目中给出的函数依赖集合F,我们可以将R分解成以下两个关系表: R1(U1,F1):CEB F1={CE->B} R2(U2,F2):ABCECD F2={AB->C, B->D, C->E, CE->B, AC->B} 分解后的关系表R1和R2都满足第三范式。 因此,R的范式级别为第二范式(2NF)。

相关推荐

您好,感谢您的提问。以下是对您问题的回答: 根据您提供的函数依赖集 F,我们可以得到以下的函数闭包集合: - A+ = ACD (根据 CD→A 推出) - B+ = BECDA (根据 AE→BC 推出) - C+ = C (根据 AB→C 无法推出其他属性) - D+ = D (同理 C+) - E+ = BECDA (同理 B+) 根据候选码的定义,如果某个属性集合能够唯一决定关系模式 R 中所有属性,那么这个属性集合就是 R 的候选码。根据函数依赖集 F 的定义,我们可以得出以下结论: - AB 是 R 的候选码。因为,从 AB 中可以推出 C,而从 AC、BC 中均无法推出所有属性(即 A、B、C、D、E)。 - CD 也是 R 的候选码。因为,CD 可以决定 A,而从 AC、BC 中均无法推出所有属性。 - AE 不是 R 的候选码。因为,从 AE 中可以推出 BC,但是 BC 无法决定 D。 因此,R 的所有候选码为 AB 和 CD。 根据范式的定义,如果一个关系模式满足某一范式的所有要求,但不满足比这一范式更高级的任何范式的要求,那么这个关系模式就达到了这一范式。根据候选码和函数依赖集 F,我们可以得出以下结论: - AB → C 违反了第二范式(2NF)。因为 C 不完全依赖于 AB,而是部分依赖于 AB。解决方法是将 R 分解成 R1(ABD)和 R2(ABC),其中 R1 中包含了函数依赖集 {CD→A},R2 中包含了函数依赖集 {AB→C}。 - CD → A 和 AE → BC 均满足第三范式(3NF)和 Boyce-Codd 范式(BCNF)。因为它们的决定因素均为候选码。 因此,R 的范式为 BCNF。 希望以上回答能够解决您的问题,如有疑问请随时追问。
### 回答1: 假设有如下关系模式R: R(A, B, C, D) 其中存在如下多值依赖: {A, B} ->> {C} 现在我们增加一个属性E,得到如下关系模式R': R'(A, B, C, D, E) 如果我们将E与A和B都相关联,即有如下函数依赖: E -> A E -> B 那么多值依赖{A, B} ->> {C}就不再成立了,因为我们可以通过E来推导出C,不再需要A和B的组合。这种情况下,关系模式R'中存在部分依赖和函数依赖,但不存在多值依赖。 ### 回答2: 存在多值依赖的关系模式是指在一个关系模式中,存在某个属性组(集合)决定另一个非主属性集合的多个属性组的情况。 举一个例子,假设有一个关系模式R(A, B, C, D),其中A是主属性。在关系模式R中存在以下的依赖关系: AB -> C AB -> D 这里,属性组AB决定了属性C和属性D的值。意味着对于相同的属性组AB,属性C和属性D的值必须是一致的。 现在,我们在关系模式R中增加一个属性E。对于属性集合AB到属性E的多值依赖,我们无法满足多值依赖不成立的条件。即,在给定属性组AB的情况下,属性E的值可能是多个值而不是唯一的一个值。这样就破坏了多值依赖成立的条件。 因此,我们可以得出结论,在关系模式R中增加属性E,将导致多值依赖不成立。 ### 回答3: 一个存在多值依赖的关系模式是学生与课程的关系。假设我们有一个关系模式为“学生-课程”,其中包含学生的学号、姓名和所选课程的课程号、课程名和学分。在这个关系模式中,一个学生可能选修多门不同的课程,而一门课程也可以被多名学生选修,因此存在学生学号和课程号之间的多值依赖。 例如,存在如下数据: 学生(学号,姓名): (S001,李明) (S002,王红) 课程(课程号,课程名,学分): (C001,数学,4) (C002,英语,3) 选课(学号,课程号): (S001,C001) (S001,C002) (S002,C001) (S002,C002) 在这个关系模式中,学生的学号决定了他们所选课程的课程号,同时课程号决定了有多少学生选修了这门课程,所以存在学生学号-课程号之间的多值依赖。 现在,我们尝试向该关系模式中增加一个表示老师的属性“教师姓名”。如果我们将“教师姓名”属性直接添加到关系模式中,多值依赖就不再成立了。因为教师姓名与学生学号和课程号之间不存在直接关系,所以教师姓名无法依赖于学生学号或课程号。在这种情况下,无论学生学号和课程号如何改变,教师姓名都保持不变。 总之,通过增加一个与学生和课程之间无直接关系的属性,我们可以打破原有的多值依赖关系。
el-table是vue框架中常见的表格组件。为了方便用户将表格数据导出excel文件,通常会在页面上添加“导出”按钮。实现这个功能的方法如下: 1.安装依赖 用户首先需要在项目中安装两个依赖:file-saver和xslx。其中,file-saver负责文件下载,xslx是一种Excel文档的格式化插件。 2.导出功能的实现 Vue.js 可以通过 methods 属性给实例添加一个自定义的导出方法。这个方法需要通过tableData变量获取表格中的数据,并进行预处理,最后将数据下载为excel文件。 在预处理阶段,可以借助第三方插件“xlsx”将数据转换为二进制数据,并通过file-saver的Blob方法生成一个Blob对象。代码如下: exportExcel() { const data = this.tableData; const sheet = XLSX.utils.json_to_sheet(data); // json_to_sheet将json数据处理成excel需要的格式 const blob = new Blob([s2ab(XLSX.write({ // write函数将二进制数据写入blob中 SheetNames: ['Sheet1'], Sheets: { 'Sheet1': sheet } }, { bookType: 'xlsx', type: 'binary' }))], { type: 'application/octet-stream' }); // 将工作簿类型定义为xlsx,将数据类型定义为:二进制数据 saveAs(blob, '导出表格.xlsx'); // 将数据对象以xlsx格式下载 } 3.完成导出功能后,在页面上添加按钮,绑定导出方法即可。 以上就是el-table导出excel的实现方法。通过以上步骤,用户可以方便地将vue框架中的表格数据导出为excel文件。
EDK2是一个开源的UEFI固件开发框架,它提供了许多常用的驱动程序和工具,可以帮助开发者快速构建高质量的UEFI固件。如果你要在EDK2中安装HDMI驱动程序,可以按照以下步骤进行操作: 1. 下载最新版本的EDK2,并解压缩到本地目录中。 2. 打开EDK2的Shell环境,并设置相关环境变量。例如,如果你的EDK2目录位于"C:\EDK2",则可以使用以下命令设置环境变量: set EDK_TOOLS_PATH=C:\EDK2\BaseTools set WORKSPACE=C:\EDK2\MyWorkspace set PACKAGES_PATH=C:\EDK2\MyWorkspace\MyPackages 3. 在EDK2的Shell环境中,使用以下命令创建一个新的驱动程序: edksetup.bat cd MyWorkspace mkdir MyDriver cd MyDriver 4. 在MyDriver目录中,创建一个名为 MyDriver.inf 的文件,并输入以下内容: [Defines] INF_VERSION = 0x00010005 BASE_NAME = MyDriver FILE_GUID = 12345678-1234-1234-1234-1234567890AB VERSION_STRING = 1.0 MODULE_TYPE = UEFI_DRIVER [Sources] MyDriver.c [Packages] MdePkg/MdePkg.dec [LibraryClasses] UefiDriverEntryPoint [Protocols] GraphicsOutput [BuildOptions] -DUSE_HDMI=1 在上面的示例中,我们指定了驱动程序的版本号、GUID、模块类型、源文件和依赖项等信息,并将USE_HDMI设置为1以启用HDMI支持。 5. 在MyDriver目录中,创建一个名为 MyDriver.c 的文件,并输入以下内容: #include <Uefi.h> #include #include #include EFI_STATUS EFIAPI MyDriverEntryPoint ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; EFI_GRAPHICS_OUTPUT_PROTOCOL *GraphicsOutput; Status = gBS->LocateProtocol (&gEfiGraphicsOutputProtocolGuid, NULL, (VOID **)&GraphicsOutput); if (EFI_ERROR (Status)) { Print(L"Failed to locate GraphicsOutput protocol: %r\n", Status); return Status; } // TODO: Add HDMI support here return EFI_SUCCESS; } 在上面的示例中,我们定义了一个名为MyDriverEntryPoint的入口函数,并使用LocateProtocol函数查找GraphicsOutput协议。在此之后,你可以添加HDMI支持代码。 6. 在MyDriver目录中,运行以下命令来编译和构建驱动程序: build -p MyDriver.inf -a X64 -b RELEASE 在上面的示例中,我们使用build命令来编译和构建驱动程序,并指定了平台类型和版本等参数。 7. 编译和构建成功后,你可以在BUILD目录中找到编译后的驱动程序文件。在EDK2中安装和加载驱动程序的方法因平台而异,请参考EDK2文档和平台规格书以获取更多帮助。 需要注意的是,EDK2开发需要一定的编程和驱动开发经验,如果你没有相关的经验或者知识,可能需要花费一些时间学习和掌握相关技能。

最新推荐

MingW VC 之.a .lib .dll .def 关系

lib可以使用lib, 和reimp(lib-&gt;a工具) 所有的bin文件,包括dll,exe,lib,a都可以使用dumpbin. 参考: http://hi.baidu.com/kaien_space/blog/item/5e77fafa2ba9ff16a8d3110a.html Mingw官网文档: ...

第四届 蓝桥杯 竞赛试题题目 C/C++高职高专组

 假设 a b c d e 代表1~9不同的5个数字(注意是各不相同的数字,且不含0)    能满足形如: ab * cde = adb * ce 这样的算式一共有多少种呢?      请你利用计算机的优势寻找所有的可能,并回答不同算式的种类...

“科技引领未来”互联网科技企业战略合作PPT模板

“科技引领未来”互联网科技企业战略合作PPT模板

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

java二维数组矩阵相乘

矩阵相乘可以使用二维数组来实现,以下是Java代码示例: ```java public class MatrixMultiplication { public static void main(String[] args) { int[][] matrix1 = {{1, 2, 3}, {4, 5, 6}}; // 定义一个2x3的矩阵 int[][] matrix2 = {{7, 8}, {9, 10}, {11, 12}}; // 定义一个3x2的矩阵 int[][] result = multiply(matrix1, matr

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

ant-button 点击实践

好的,下面是 ant-button 点击实践的步骤: 1. 首先,在你的项目中安装 Ant Design UI 库,可以通过 npm 命令进行安装: ``` npm install antd --save ``` 2. 在你的代码中引入 antd 库和 antd 样式,示例代码如下: ```javascript import React from 'react'; import ReactDOM from 'react-dom'; import 'antd/dist/antd.css'; import { Button } from 'antd'; function handleCl

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.