基于matlab暗通道去雾传输率

时间: 2024-03-31 22:30:59 浏览: 108
基于Matlab的暗通道去雾算法是一种常用的图像去雾方法,它通过分析图像中的暗通道来估计场景中的全局大气光照和传输率,从而实现去除雾霾的效果。以下是该算法的传输率估计步骤: 1. 计算暗通道:对输入的雾霾图像进行暗通道计算,即在每个像素位置上选择RGB三个通道中最小的值作为该位置的暗通道值。 2. 估计全局大气光照:在暗通道图像中选择具有最高亮度值的像素点作为全局大气光照的估计值。 3. 估计传输率:根据全局大气光照和原始图像的亮度值之间的关系,通过以下公式估计传输率: t(x) = 1 - w * min(I(x)/A) 其中,t(x)为传输率,I(x)为原始图像的亮度值,A为全局大气光照的估计值,w为一个常数(通常取0.95)。 4. 去雾处理:根据估计得到的传输率和全局大气光照,对原始图像进行去雾处理,即通过以下公式计算去雾后的图像: J(x) = (I(x) - A) / max(t(x), t0) + A 其中,J(x)为去雾后的图像,t0为一个较小的常数(通常取0.1),用于避免传输率过小导致除法溢出。
相关问题

matlab暗通道去雾

### 回答1: 暗通道去雾是一种图像去雾算法,最早由He et al.(2009)提出,并在Matlab中得到实现。该算法基于以下原理:在大多数室外场景中,由于雾气的存在,景物颜色较浅且细节丢失;然而,通过观察可以发现,在大部分情况下,即使是在有雾的景物中,暗通道仍然存在较高的像素值。 实施该算法的步骤如下: 1. 读取雾化图像和相应的深度图像,并将其转换为灰度图像。 2. 通过计算每个像素点在各个颜色通道上的最小值得到暗通道图像。 3. 估计全局大气光照值。根据经验,暗通道中像素值最高的一部分图像区域通常对应于大气光照,因此可以通过选取这部分区域的高亮像素进行估计。 4. 根据估计的大气光照值和场景深度来恢复场景颜色。首先,通过除以估计的大气光照值得到去雾场景的透射率;然后,使用透射率来恢复去雾场景的颜色。 5. 将恢复的去雾场景与原始的雾化图像进行融合,以获得最终的去雾结果。 使用Matlab进行暗通道去雾的实现时,可以利用图像处理工具箱提供的函数和工具进行图像的读取、处理和显示。同时,也可以自定义函数和脚本来实现算法的各个步骤。Matlab提供了丰富的图像处理函数和工具,方便进行像素级别的操作和图像的可视化。通过调用这些函数和工具,我们可以较为方便地实现暗通道去雾算法,并对结果进行分析和评估。 ### 回答2: 暗通道去雾是一种图像去雾算法,它利用图像中场景中存在的暗区进行去雾处理。在matlab中,我们可以通过以下步骤实现暗通道去雾。 首先,我们需要加载原始带雾图像,并将其转换为浮点数形式。接着,我们计算输入图像的暗通道。暗通道可以通过在图像的每个像素位置上选择该位置周围一个小窗口(例如3x3窗口)的最小通道值来获得。这可以用matlab的imfilter函数来实现。 接下来,我们通过使用暗通道得到的最小值来估计原始场景中的大气光值。一种常用的估计方法是在原始图像的前1%到10%的像素值中选择最暗的像素,并将其作为大气光值。在matlab中,我们可以使用函数prctile来实现。 然后,我们需要估计透射率,它表示光线在通过雾气时的衰减程度。透射率和大气光之间存在一个简单的关系,即t(x) = 1 - w * minCH / A,其中t(x)是透射率,w是一个常数(通常设置为0.95),minCH是暗通道图像,A是估计的大气光值。使用这个关系,在matlab中可以很容易地推导出透射率。 最后,我们可以使用透射率来去除图像中的雾气。具体地说,我们可以使用如下公式来恢复场景中的无雾图像:J(x) = ([I(x) - A]/max(t(x), t0)) + A,其中J(x)是去雾后的图像,I(x)是输入带雾图像,A是估计的大气光值,t(x)是估计的透射率,t0是一个小的正数(以防止分母为零)。在matlab中,我们可以很容易地使用这个公式来进行计算。 通过以上步骤,我们可以使用matlab实现暗通道去雾算法,并得到去雾后的图像。这种方法对于恢复雾气影响的图像有很好的效果,但对于涉及高反射或太阳光的图像效果不佳。 ### 回答3: 暗通道去雾是一种常用的图像去雾方法,在matlab中可以通过以下步骤实现。 首先,读入含有雾的图像。可以使用matlab中的imread函数读取图像文件,将其存储为一个矩阵。 然后,计算图像的暗通道。暗通道是指图像中不同区域中亮度最小的像素值。可以通过先将图像转换为灰度图像,然后对每个子区域计算最小值来获得每个像素的暗通道。使用matlab中的imdilate函数可以方便地对图像进行膨胀操作。 接下来,估计大气光强度。大气光强度可以通过暗通道中最亮的像素值获得。通过访问暗通道矩阵,找到最亮的像素值并确定其位置,然后通过在原图像中获取该位置的像素值来估计大气光强度。 然后,计算传输率。传输率是指雾对图像的影响程度,可以根据暗通道和大气光的估计值来计算。传输率通常采用一个经验常数来调整。 最后,根据传输率,估计图像中的雾浓度,并进行去雾操作。通过将每个像素根据传输率进行调整,即可去除图像中的雾霾。 通过以上步骤,在matlab中可以实现暗通道去雾。需要注意的是,暗通道去雾方法对于一些特殊情况,如大面积均匀雾以及光照变化较大的图像可能效果不好,因此可以结合其他方法进行改进或者调整参数以提高效果。

matlab暗通道去雾代码

以下是一份基于暗通道先验的去雾 MATLAB 代码: ```matlab function defogged_img = dark_channel_prior(image, window_size, omega, t0) % Inputs: % image - 输入的有雾图像 % window_size - 暗通道先验窗口的大小 % omega - 权值调节参数 % t0 - 最小可接受透射率阈值 % Outputs: % defogged_img - 去雾后的图像 % 将图像从 [0, 1] 范围内的浮点数转换为 [0, 255] 范围内的整数 if max(image(:)) <= 1 image = image * 255; end % 将图像转换为双精度类型 image = im2double(image); % 计算暗通道矩阵 dark_channel = min(image, [], 3); dark_channel = ordfilt2(dark_channel, 1, ones(window_size)); % 计算透射率 transmission = 1 - omega * dark_channel; % 过滤掉太小的透射率值 transmission(transmission < t0) = t0; % 估计大气光 atmosphere = estimate_atmosphere(image, transmission); % 使用传输恢复图像 defogged_img = transmission_based_dehazing(image, transmission, atmosphere); end function atmosphere = estimate_atmosphere(image, transmission) % Inputs: % image - 输入的有雾图像 % transmission - 透射率 % Outputs: % atmosphere - 估计的大气光 % 将图像从 [0, 1] 范围内的浮点数转换为 [0, 255] 范围内的整数 if max(image(:)) <= 1 image = image * 255; end % 将图像转换为双精度类型 image = im2double(image); % 计算暗通道矩阵 dark_channel = min(image, [], 3); dark_channel = ordfilt2(dark_channel, 1, ones(size(transmission))); % 选择前 0.1% 亮度的像素作为大气光 pixels = reshape(image, size(image, 1) * size(image, 2), size(image, 3)); pixels = pixels(dark_channel >= 0.9); atmosphere = max(pixels); end function defogged_img = transmission_based_dehazing(image, transmission, atmosphere) % Inputs: % image - 输入的有雾图像 % transmission - 透射率 % atmosphere - 估计的大气光 % Outputs: % defogged_img - 去雾后的图像 % 将图像从 [0, 1] 范围内的浮点数转换为 [0, 255] 范围内的整数 if max(image(:)) <= 1 image = image * 255; end % 将图像转换为双精度类型 image = im2double(image); % 计算归一化的反射率 normalized_reflectance = zeros(size(image)); for i = 1:size(image, 3) normalized_reflectance(:, :, i) = (image(:, :, i) - atmosphere(i)) ./ transmission + atmosphere(i); end % 裁剪归一化反射率并将其转换为图像类型 defogged_img = min(max(normalized_reflectance, 0), 1); if max(defogged_img(:)) <= 1 defogged_img = defogged_img * 255; end defogged_img = uint8(defogged_img); end ``` 要使用此代码,您可以将其复制并粘贴到 MATLAB 中,或将其保存到一个名为“dark_channel_prior.m”的文件中。然后,您可以使用以下代码加载您要去雾的图像并对其进行去雾: ```matlab % 加载有雾图像 foggy_img = imread('foggy_image.jpg'); % 使用暗通道先验进行去雾 defogged_img = dark_channel_prior(foggy_img, 15, 0.95, 0.1); % 显示原始图像和去雾后的图像 subplot(1, 2, 1); imshow(foggy_img); title('原始图像'); subplot(1, 2, 2); imshow(defogged_img); title('去雾后的图像'); ``` 请注意,此代码仅适用于单张图像,并且可能需要调整一些参数才能在其他图像上获得最佳结果。
阅读全文

相关推荐

最新推荐

recommend-type

基于MATLAB-GUI的简易计算器设计.docx

基于MATLAB-GUI的简易计算器设计是一个利用MATLAB的图形用户界面开发环境(GUIDE)构建的项目。MATLAB是一款强大的数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算。它的GUI特性允许用户创建直观的、...
recommend-type

AIMP2 .NET 互操作插件

AIMP2 .NET 互操作插件允许使用托管代码(C#、VB 等)为 AIMP2 编写插件。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->