Cnn手写识别代码Python
时间: 2024-06-08 20:04:01 浏览: 98
python代码_handwrittenpython_手写识别_手写数字识别_CNN神经网络代码_
5星 · 资源好评率100%
卷积神经网络(Convolutional Neural Networks, CNN)在手写数字识别任务中是一个常见的深度学习模型。Python是常用的数据科学和机器学习语言,有许多库如TensorFlow、Keras或PyTorch可以帮助实现CNN。以下是一个简单的使用Keras库进行手写数字识别的代码示例:
```python
# 导入所需的库
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
# 数据预处理
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
train_images, test_images = train_images / 255.0, test_images / 255.0
# 定义CNN模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # 输出层,10个类别对应0-9的手写数字
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练模型
model.fit(train_images, train_labels, epochs=5)
# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
# 测试新样本
predictions = model.predict(test_images)
```
阅读全文