给我写一段 python 实现双目相机标定的代码
时间: 2023-08-31 07:19:38 浏览: 193
### 回答1:
# 导入相应的库
import cv2
import numpy as np # 获取双目相机标定所需要的参数
# 获取棋盘格角点的位置
# 如果是灰度图像,则为1,否则为3
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((9*6, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2) # 初始化左右摄像头
left_camera = cv2.VideoCapture(0)
right_camera = cv2.VideoCapture(1) # 创建用于存放标定结果的数组
objpoints = []
imgpoints_l = []
imgpoints_r = [] # 创建计数器
count = 0 # 标定
while True:
# 读取图像
_, frame_l = left_camera.read()
_, frame_r = right_camera.read()
gray_l = cv2.cvtColor(frame_l, cv2.COLOR_BGR2GRAY)
gray_r = cv2.cvtColor(frame_r, cv2.COLOR_BGR2GRAY)
# 找到标定板上的角点
ret_l, corners_l = cv2.findChessboardCorners(gray_l, (9, 6), None)
ret_r, corners_r = cv2.findChessboardCorners(gray_r, (9, 6), None)
if ret_l is True and ret_r is True:
objpoints.append(objp)
# 在左右摄像头标定板图像上寻找角点
corners2_l = cv2.cornerSubPix(gray_l, corners_l, (11, 11), (-1, -1), criteria)
corners2_r = cv2.cornerSubPix(gray_r, corners_r, (11, 11), (-1, -1), criteria)
imgpoints_l.append(corners2_l)
imgpoints_r.append(corners2_r)
# 绘制角点
cv2.drawChessboardCorners(frame_l, (9, 6), corners2_l, ret_l)
cv2.drawChessboardCorners(frame_r, (9, 6), corners2_r, ret_r)
cv2.imshow('left_camera', frame_l)
cv2.imshow('right_camera', frame_r)
cv2.waitKey(500)
count += 1
# 标定成功后跳出循环
if count > 20:
break# 获取摄像头的标定矩阵和畸变系数
ret_l, mtx_l, dist_l, rvecs_l, tvecs_l = cv2.calibrateCamera(objpoints, imgpoints_l, gray_l.shape[::-1], None, None)
ret_r, mtx_r, dist_r, rvecs_r, tvecs_r = cv2.calibrateCamera(objpoints, imgpoints_r, gray_r.shape[::-1], None, None) # 获取双目摄像头的标定参数
ret, M1, d1, M2, d2, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpoints_l, imgpoints_r, mtx_l, dist_l, mtx_r, dist_r, gray_l.shape[::-1]) # 获取极线参数
stereoRrectify_l, stereoRrectify_r, Rl, Rr, Pl, Pr, Q, roi1, roi2 = cv2.stereoRectify(M1, d1, M2, d2, gray_l.shape[::-1], R, T) # 将极线参数应用到图像上
map1_l, map2_l = cv2.initUndistortRectifyMap(M1, d1, Rl, Pl, gray_l.shape[::-1], cv2.CV_16SC2)
map1_r, map2_r = cv2.initUndistortRectifyMap(M2, d2, Rr, Pr, gray_r.shape[::-1], cv2.CV_16SC2)
### 回答2:
双目相机标定是一个关键的前置步骤,为双目视觉系统的深度估计、三维重建和立体测量提供准确的图像数据。下面是一个简单的Python代码实现双目相机标定的示例:
```python
import cv2
import numpy as np
def calibrate_stereo_camera(image_folder, chessboard_size, square_size):
obj_points = [] # 3D object points
img_points_l = [] # 2D image points for left camera
img_points_r = [] # 2D image points for right camera
pattern_size = (chessboard_size[0]-1, chessboard_size[1]-1)
# Prepare object points
objp = np.zeros((np.prod(pattern_size), 3), dtype=np.float32)
objp[:, :2] = np.mgrid[0:pattern_size[0], 0:pattern_size[1]].T.reshape(-1, 2) * square_size
# Iterate through images
for i in range(1, 13): # Assuming there are 12 calibration images
# Load left and right images
img_left = cv2.imread(f"{image_folder}/left_{i}.jpg", 0)
img_right = cv2.imread(f"{image_folder}/right_{i}.jpg", 0)
# Find chessboard corners
ret_l, corners_l = cv2.findChessboardCorners(img_left, pattern_size)
ret_r, corners_r = cv2.findChessboardCorners(img_right, pattern_size)
if ret_l and ret_r:
obj_points.append(objp)
img_points_l.append(corners_l)
img_points_r.append(corners_r)
# Perform stereo calibration
ret, K_l, D_l, K_r, D_r, R, T, E, F = cv2.stereoCalibrate(obj_points, img_points_l, img_points_r, None, None, None, None, img_left.shape[::-1])
return ret, K_l, D_l, K_r, D_r, R, T, E, F
```
以上代码实现了双目相机标定的基本流程。首先,根据传入的图像文件夹路径、棋盘格尺寸和方格尺寸等参数,定义了一些变量和参数。然后,通过循环迭代读取标定图像,并使用`cv2.findChessboardCorners()`函数找到左右相机图像上的棋盘格角点。如果检测到了足够的角点,则将角点坐标存入`img_points_l`和`img_points_r`中。同时,将已知的定标板角点的3D坐标值存入`obj_points`中。
随后,使用`cv2.stereoCalibrate()`函数进行双目标定,得到了相机内参、畸变系数、旋转矩阵和平移向量等标定结果。
最后,返回了标定结果,包括左右相机的内参、畸变系数、旋转矩阵和平移向量等信息。
请注意,以上只是一个简单示例代码,实际的双目相机标定过程可能需要更多的参数和步骤,如相机畸变校正和立体校正等。具体实现方法可以根据实际需求进行调整和扩展。
### 回答3:
双目相机标定是计算机视觉中的重要任务之一,可以通过该标定过程来获得两个相机之间的转换关系,从而实现三维重建、立体视觉等应用。以下是一个简单的Python代码实现双目相机标定的示例:
```python
import cv2
import numpy as np
# 准备用于标定的棋盘格模板大小
pattern_size = (9, 6) # 内部角点数量
# 创建存储标定图像和物体点的数组
obj_points = [] # 存储三维物体点
img_points_L = [] # 存储左相机图像点
img_points_R = [] # 存储右相机图像点
# 准备棋盘格物体点
obj_p = np.zeros((np.prod(pattern_size), 3), dtype=np.float32)
obj_p[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
# 打开相机设备
cap_L = cv2.VideoCapture(0) # 左相机的设备索引,默认为0
cap_R = cv2.VideoCapture(1) # 右相机的设备索引,默认为1
while True:
# 读取图像
ret_L, frame_L = cap_L.read()
ret_R, frame_R = cap_R.read()
# 图像灰度处理
gray_L = cv2.cvtColor(frame_L, cv2.COLOR_BGR2GRAY)
gray_R = cv2.cvtColor(frame_R, cv2.COLOR_BGR2GRAY)
# 查找棋盘格角点
ret_L, corners_L = cv2.findChessboardCorners(gray_L, pattern_size)
ret_R, corners_R = cv2.findChessboardCorners(gray_R, pattern_size)
# 若成功找到棋盘格角点,则进行标定
if ret_L and ret_R:
obj_points.append(obj_p)
img_points_L.append(corners_L)
img_points_R.append(corners_R)
cv2.drawChessboardCorners(frame_L, pattern_size, corners_L, ret_L)
cv2.drawChessboardCorners(frame_R, pattern_size, corners_R, ret_R)
cv2.imshow("Left Camera", frame_L)
cv2.imshow("Right Camera", frame_R)
# 若按下ESC键,则退出标定
if cv2.waitKey(1) == 27:
break
# 相机标定
ret_L, K_L, dist_L, rvecs_L, tvecs_L = cv2.calibrateCamera(obj_points, img_points_L, gray_L.shape[::-1], None, None)
ret_R, K_R, dist_R, rvecs_R, tvecs_R = cv2.calibrateCamera(obj_points, img_points_R, gray_R.shape[::-1], None, None)
# 双目标定
ret, K_L, dist_L, K_R, dist_R, R, T, E, F = cv2.stereoCalibrate(obj_points, img_points_L, img_points_R, K_L, dist_L, K_R, dist_R, gray_L.shape[::-1])
# 打印标定结果
print("相机内参数 (左):")
print(K_L)
print("畸变参数 (左):")
print(dist_L)
print()
print("相机内参数 (右):")
print(K_R)
print("畸变参数 (右):")
print(dist_R)
print()
print("旋转矩阵:")
print(R)
print("平移向量:")
print(T)
print()
print("本质矩阵:")
print(E)
print("基础矩阵:")
print(F)
# 释放相机设备
cap_L.release()
cap_R.release()
# 关闭窗口
cv2.destroyAllWindows()
```
以上代码使用OpenCV库来实现相机标定的相关功能。它通过在棋盘格图案中检测角点的方式来获取图像点,然后利用这些点进行相机标定和双目标定。最终输出的结果包括相机的内参数、畸变参数、旋转矩阵、平移向量、本质矩阵和基础矩阵。
阅读全文