给我写一段 python 实现双目相机标定的代码

时间: 2023-08-31 13:19:38 浏览: 92
### 回答1: # 导入相应的库 import cv2 import numpy as np # 获取双目相机标定所需要的参数 # 获取棋盘格角点的位置 # 如果是灰度图像,则为1,否则为3 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) objp = np.zeros((9*6, 3), np.float32) objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2) # 初始化左右摄像头 left_camera = cv2.VideoCapture(0) right_camera = cv2.VideoCapture(1) # 创建用于存放标定结果的数组 objpoints = [] imgpoints_l = [] imgpoints_r = [] # 创建计数器 count = 0 # 标定 while True: # 读取图像 _, frame_l = left_camera.read() _, frame_r = right_camera.read() gray_l = cv2.cvtColor(frame_l, cv2.COLOR_BGR2GRAY) gray_r = cv2.cvtColor(frame_r, cv2.COLOR_BGR2GRAY) # 找到标定板上的角点 ret_l, corners_l = cv2.findChessboardCorners(gray_l, (9, 6), None) ret_r, corners_r = cv2.findChessboardCorners(gray_r, (9, 6), None) if ret_l is True and ret_r is True: objpoints.append(objp) # 在左右摄像头标定板图像上寻找角点 corners2_l = cv2.cornerSubPix(gray_l, corners_l, (11, 11), (-1, -1), criteria) corners2_r = cv2.cornerSubPix(gray_r, corners_r, (11, 11), (-1, -1), criteria) imgpoints_l.append(corners2_l) imgpoints_r.append(corners2_r) # 绘制角点 cv2.drawChessboardCorners(frame_l, (9, 6), corners2_l, ret_l) cv2.drawChessboardCorners(frame_r, (9, 6), corners2_r, ret_r) cv2.imshow('left_camera', frame_l) cv2.imshow('right_camera', frame_r) cv2.waitKey(500) count += 1 # 标定成功后跳出循环 if count > 20: break# 获取摄像头的标定矩阵和畸变系数 ret_l, mtx_l, dist_l, rvecs_l, tvecs_l = cv2.calibrateCamera(objpoints, imgpoints_l, gray_l.shape[::-1], None, None) ret_r, mtx_r, dist_r, rvecs_r, tvecs_r = cv2.calibrateCamera(objpoints, imgpoints_r, gray_r.shape[::-1], None, None) # 获取双目摄像头的标定参数 ret, M1, d1, M2, d2, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpoints_l, imgpoints_r, mtx_l, dist_l, mtx_r, dist_r, gray_l.shape[::-1]) # 获取极线参数 stereoRrectify_l, stereoRrectify_r, Rl, Rr, Pl, Pr, Q, roi1, roi2 = cv2.stereoRectify(M1, d1, M2, d2, gray_l.shape[::-1], R, T) # 将极线参数应用到图像上 map1_l, map2_l = cv2.initUndistortRectifyMap(M1, d1, Rl, Pl, gray_l.shape[::-1], cv2.CV_16SC2) map1_r, map2_r = cv2.initUndistortRectifyMap(M2, d2, Rr, Pr, gray_r.shape[::-1], cv2.CV_16SC2) ### 回答2: 双目相机标定是一个关键的前置步骤,为双目视觉系统的深度估计、三维重建和立体测量提供准确的图像数据。下面是一个简单的Python代码实现双目相机标定的示例: ```python import cv2 import numpy as np def calibrate_stereo_camera(image_folder, chessboard_size, square_size): obj_points = [] # 3D object points img_points_l = [] # 2D image points for left camera img_points_r = [] # 2D image points for right camera pattern_size = (chessboard_size[0]-1, chessboard_size[1]-1) # Prepare object points objp = np.zeros((np.prod(pattern_size), 3), dtype=np.float32) objp[:, :2] = np.mgrid[0:pattern_size[0], 0:pattern_size[1]].T.reshape(-1, 2) * square_size # Iterate through images for i in range(1, 13): # Assuming there are 12 calibration images # Load left and right images img_left = cv2.imread(f"{image_folder}/left_{i}.jpg", 0) img_right = cv2.imread(f"{image_folder}/right_{i}.jpg", 0) # Find chessboard corners ret_l, corners_l = cv2.findChessboardCorners(img_left, pattern_size) ret_r, corners_r = cv2.findChessboardCorners(img_right, pattern_size) if ret_l and ret_r: obj_points.append(objp) img_points_l.append(corners_l) img_points_r.append(corners_r) # Perform stereo calibration ret, K_l, D_l, K_r, D_r, R, T, E, F = cv2.stereoCalibrate(obj_points, img_points_l, img_points_r, None, None, None, None, img_left.shape[::-1]) return ret, K_l, D_l, K_r, D_r, R, T, E, F ``` 以上代码实现了双目相机标定的基本流程。首先,根据传入的图像文件夹路径、棋盘格尺寸和方格尺寸等参数,定义了一些变量和参数。然后,通过循环迭代读取标定图像,并使用`cv2.findChessboardCorners()`函数找到左右相机图像上的棋盘格角点。如果检测到了足够的角点,则将角点坐标存入`img_points_l`和`img_points_r`中。同时,将已知的定标板角点的3D坐标值存入`obj_points`中。 随后,使用`cv2.stereoCalibrate()`函数进行双目标定,得到了相机内参、畸变系数、旋转矩阵和平移向量等标定结果。 最后,返回了标定结果,包括左右相机的内参、畸变系数、旋转矩阵和平移向量等信息。 请注意,以上只是一个简单示例代码,实际的双目相机标定过程可能需要更多的参数和步骤,如相机畸变校正和立体校正等。具体实现方法可以根据实际需求进行调整和扩展。 ### 回答3: 双目相机标定是计算机视觉中的重要任务之一,可以通过该标定过程来获得两个相机之间的转换关系,从而实现三维重建、立体视觉等应用。以下是一个简单的Python代码实现双目相机标定的示例: ```python import cv2 import numpy as np # 准备用于标定的棋盘格模板大小 pattern_size = (9, 6) # 内部角点数量 # 创建存储标定图像和物体点的数组 obj_points = [] # 存储三维物体点 img_points_L = [] # 存储左相机图像点 img_points_R = [] # 存储右相机图像点 # 准备棋盘格物体点 obj_p = np.zeros((np.prod(pattern_size), 3), dtype=np.float32) obj_p[:, :2] = np.indices(pattern_size).T.reshape(-1, 2) # 打开相机设备 cap_L = cv2.VideoCapture(0) # 左相机的设备索引,默认为0 cap_R = cv2.VideoCapture(1) # 右相机的设备索引,默认为1 while True: # 读取图像 ret_L, frame_L = cap_L.read() ret_R, frame_R = cap_R.read() # 图像灰度处理 gray_L = cv2.cvtColor(frame_L, cv2.COLOR_BGR2GRAY) gray_R = cv2.cvtColor(frame_R, cv2.COLOR_BGR2GRAY) # 查找棋盘格角点 ret_L, corners_L = cv2.findChessboardCorners(gray_L, pattern_size) ret_R, corners_R = cv2.findChessboardCorners(gray_R, pattern_size) # 若成功找到棋盘格角点,则进行标定 if ret_L and ret_R: obj_points.append(obj_p) img_points_L.append(corners_L) img_points_R.append(corners_R) cv2.drawChessboardCorners(frame_L, pattern_size, corners_L, ret_L) cv2.drawChessboardCorners(frame_R, pattern_size, corners_R, ret_R) cv2.imshow("Left Camera", frame_L) cv2.imshow("Right Camera", frame_R) # 若按下ESC键,则退出标定 if cv2.waitKey(1) == 27: break # 相机标定 ret_L, K_L, dist_L, rvecs_L, tvecs_L = cv2.calibrateCamera(obj_points, img_points_L, gray_L.shape[::-1], None, None) ret_R, K_R, dist_R, rvecs_R, tvecs_R = cv2.calibrateCamera(obj_points, img_points_R, gray_R.shape[::-1], None, None) # 双目标定 ret, K_L, dist_L, K_R, dist_R, R, T, E, F = cv2.stereoCalibrate(obj_points, img_points_L, img_points_R, K_L, dist_L, K_R, dist_R, gray_L.shape[::-1]) # 打印标定结果 print("相机内参数 (左):") print(K_L) print("畸变参数 (左):") print(dist_L) print() print("相机内参数 (右):") print(K_R) print("畸变参数 (右):") print(dist_R) print() print("旋转矩阵:") print(R) print("平移向量:") print(T) print() print("本质矩阵:") print(E) print("基础矩阵:") print(F) # 释放相机设备 cap_L.release() cap_R.release() # 关闭窗口 cv2.destroyAllWindows() ``` 以上代码使用OpenCV库来实现相机标定的相关功能。它通过在棋盘格图案中检测角点的方式来获取图像点,然后利用这些点进行相机标定和双目标定。最终输出的结果包括相机的内参数、畸变参数、旋转矩阵、平移向量、本质矩阵和基础矩阵。

相关推荐

最新推荐

不到40行代码用Python实现一个简单的推荐系统

主要给大家介绍了如何利用不到40行python代码实现一个简单的推荐系统,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

Python opencv相机标定实现原理及步骤详解

主要介绍了Python opencv相机标定实现原理及步骤详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

Python使用OpenCV进行标定

主要介绍了Python使用OpenCV进行标定,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

Python简单实现词云图代码及步骤解析

主要介绍了Python简单实现词云图代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

答题辅助python代码实现

主要为大家详细介绍了答题辅助python代码实现,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

leetcode总结1

在LeetCode总结中,我们发现不同编程语言在内存管理方面存在着明显的差异。首先,C语言中的内存管理方式与LeetCode算法题中的情况不完全相同。C语言中,内存被分为五个区域:堆、栈、自由存储区、全局/静态存储区和常量存储区。堆是由程序员手动释放的内存区域,一般与new和delete关键字配合使用。栈则是由编译器自动分配和释放的,主要存放局部变量和函数参数。自由存储区与堆类似,但是使用malloc和free进行内存的分配和释放。全局/静态存储区用来存放全局变量和静态变量,而常量存储区则存放不可修改的常量。在LeetCode中,我们并不需要关心具体的内存分区,但需要注意空间的大小和生长方向。 LeetCode算法题对内存空间的大小要求并不是很高,因为通常我们只需要存储输入数据和算法运行所需的临时变量。相比之下,一些需要处理大规模数据的算法可能会需要更大的内存空间来存储中间结果。在C语言中,我们可以通过手动管理堆内存来提高算法的空间效率,但是对于LeetCode算法题而言,并不是一个优先考虑的问题。 另一方面,LeetCode算法题中内存管理的方式也存在一些差异。在LeetCode中,我们通常不需要手动释放内存,因为题目中会对内存分配和释放进行自动化处理。而在C语言中,我们需要手动调用malloc和free函数来动态分配和释放内存。这种自动化的内存管理方式可以减少程序员出错的概率,同时也提高了代码的可读性和可维护性。 此外,LeetCode算法题中内存分配的效率也与C语言的堆栈机制有所不同。LeetCode平台通常会提供一定的内存限制,所以我们需要尽量高效地利用内存空间。而C语言中的内存分配较为灵活,但也容易造成内存碎片,影响程序的性能和稳定性。 综上所述,虽然LeetCode算法题和C语言在内存管理方面存在一些差异,但我们可以通过理解其内存分区、大小、生长方向、分配方式和效率来更好地应对算法题目中的内存管理问题,提高解题效率和优化算法性能。在解LeetCode问题过程中,我们需要根据具体情况选择最合适的内存管理策略,以确保算法的正确性和效率。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

学会创建自定义VMware模板以提高部署效率

# 1. 什么是虚拟化技术 虚拟化技术是一种将物理资源抽象为虚拟形式来提高资源利用率的技术。通过虚拟化,可以实现将一台物理服务器划分为多个虚拟机,每个虚拟机独立运行不同的操作系统和应用程序。这种技术使得 IT 管理人员能够更灵活地管理和配置服务器资源,提高整个系统的灵活性和效率。不同类型的虚拟化技术包括硬件虚拟化、操作系统虚拟化和应用程序虚拟化,它们各自有着不同的优缺点和适用场景。理解虚拟化技术的基本概念对于进行虚拟化环境的规划和部署至关重要,能够帮助您更好地利用虚拟化技术优化 IT 环境。 # 2. 创建自定义VMware虚拟机模板 ### 准备工作 #### 安装VMware vC

torch.ones([]) 怎么用

`torch.ones([])` 是用于创建一个空的张量(tensor)的函数。空的张量是没有元素的,也就是形状为 () 或者 scalar 的张量。 如果你想创建一个空的张量,可以使用 `torch.ones([])` 的返回结果。但是需要注意,这个张量是一个标量,没有具体的值。 以下是一个示例: ```python import torch empty_tensor = torch.ones([]) print(empty_tensor) print(empty_tensor.shape) ``` 在上面的示例中,我们调用 `torch.ones([])` 函数创建了一个空的张

西电FPGA入门教材、Verilog语法基础

对于想要学习FPGA的新手来说,西电的FPGA入门教材是一个非常不错的选择。这本教材主要介绍了Verilog语法基础,而Verilog语言则是一种用于描述硬件电路的语言。在教材的目录中,首先介绍了Verilog的基础知识,包括Verilog硬件描述语言的主要能力以及Verilog的一些基本指南。Verilog是一种非常强大的语言,能够描述各种复杂的硬件电路,因此对于想要深入了解FPGA的人来说,学习Verilog语言是极为重要的。 在Verilog的基础入门部分中,首先介绍了Verilog硬件描述语言的主要能力。Verilog是一种硬件描述语言,它可以描述数字电路和系统中的行为和结构。通过Verilog,我们可以描述各种电子系统,从简单的门电路到复杂的处理器等。Verilog是一种面向事件的语言,它可以描述电路中的状态变化和事件发生。Verilog还包括一些高级特性,比如层次化的模块化设计、参数化、复杂的数据结构等,这些特性使Verilog成为一种非常强大和灵活的硬件描述语言。 接着,在Verilog指南部分中,教材详细介绍了Verilog语言的一些基本指导原则。Verilog是一种类似于C语言的语言,比较容易学习和使用。Verilog的语法规则和C语言有些许不同,但基本结构和概念是相似的。学习Verilog的关键是掌握好模块化设计、时序逻辑和组合逻辑等基本概念。同时,了解Verilog中的一些常用语法结构和语言特性也是非常重要的。这些知识将帮助新手更好地理解和应用Verilog语言,进而深入学习FPGA和硬件设计。 总的来说,西电的FPGA入门教材对于想要学习FPGA的新手来说是一个很好的选择。教材主要介绍了Verilog语法基础,而Verilog语言则是学习FPGA的基础。通过学习Verilog语言,新手可以更好地理解和应用硬件描述语言,从而深入学习FPGA和硬件设计。希望这本教材能够帮助更多的人学习和掌握FPGA技术,从而在硬件设计领域取得更好的成就。