帮我一个深度信念网络进行无监督学习的例子,使用tensorflow2.x
时间: 2024-04-29 10:23:06 浏览: 109
以下是一个深度信念网络进行无监督学习的例子,使用tensorflow2.x:
```python
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
# 构建深度信念网络
class DBN(tf.keras.Model):
def __init__(self, n_visible=784, n_hidden=[500, 500], n_classes=10):
super(DBN, self).__init__()
self.n_visible = n_visible
self.n_hidden = n_hidden
self.n_classes = n_classes
# 构建可视层
self.visible_layer = Dense(n_visible, activation='relu')
# 构建隐藏层
self.hidden_layers = []
for i, size in enumerate(n_hidden):
self.hidden_layers.append(Dense(size, activation='relu', name=f'hidden_{i}'))
# 构建分类器
self.classifier = Dense(n_classes, activation='softmax')
def call(self, x):
# 可视层
h = self.visible_layer(x)
# 隐藏层
for layer in self.hidden_layers:
h = layer(h)
# 分类器
y = self.classifier(h)
return y
# MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 数据预处理
x_train = x_train.reshape(-1, 784).astype('float32') / 255.0
x_test = x_test.reshape(-1, 784).astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
# 定义超参数
learning_rate = 0.01
batch_size = 64
epochs = 10
n_visible = 784
n_hidden = [500, 500]
n_classes = 10
# 初始化深度信念网络
model = DBN(n_visible, n_hidden, n_classes)
# 定义损失函数和优化器
loss_fn = tf.keras.losses.CategoricalCrossentropy()
optimizer = Adam(learning_rate=learning_rate)
# 进行无监督预训练
for i, layer in enumerate(model.hidden_layers):
# 构建自编码器
autoencoder = Sequential([
Dense(n_hidden[i], input_shape=(n_hidden[i-1],), activation='relu', name=f'encoder_{i}'),
Dense(n_hidden[i-1], activation='relu', name=f'decoder_{i}')
])
# 编译自编码器
autoencoder.compile(optimizer=optimizer, loss=loss_fn)
# 获取前面的层的输出
encoder_input = tf.keras.Input(shape=(n_hidden[i-1],))
for j in range(i):
encoder_input = model.hidden_layers[j](encoder_input)
# 获取当前层的输入
encoder_output = layer(encoder_input)
# 获取当前层的输出
decoder_output = autoencoder(encoder_output)
# 训练自编码器
history = autoencoder.fit(encoder_output, encoder_input, batch_size=batch_size, epochs=epochs)
# 更新当前层的权重
layer.set_weights(autoencoder.layers[0].get_weights())
# 进行有监督微调
model.compile(optimizer=optimizer, loss=loss_fn, metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test))
```
在这个例子中,我们首先定义了一个DBN类,它包含了可视层、隐藏层和分类器。然后,我们加载了MNIST数据集,将输入数据预处理为784维向量,并将标签数据转换为one-hot编码。接着,我们定义了超参数并初始化了深度信念网络。之后,我们进行了无监督预训练,对每一层的权重进行初始化。最后,我们进行了有监督微调,对整个网络进行训练。
阅读全文