在resent50中加se模块
时间: 2024-02-18 16:00:19 浏览: 75
在ResNet50中加入SE模块的方法如下:
1. 定义SE模块的类,该类包含两个部分:squeeze和excitation。其中squeeze是全局平均池化层,excitation是两个全连接层。
```python
import torch.nn as nn
class SEModule(nn.Module):
def __init__(self, channels, reduction=16):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(channels, channels // reduction, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(channels // reduction, channels, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.avg_pool(x)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmoid(out)
out = out.view(out.size(0), out.size(1), 1, 1)
return x * out
```
2. 在ResNet50的基础上,加入SE模块。将SE模块添加在每个residual block的输出之前。
```python
import torch.nn as nn
import torchvision.models as models
class ResNet50_SE(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50_SE, self).__init__()
resnet50 = models.resnet50(pretrained=True)
self.conv1 = resnet50.conv1
self.bn1 = resnet50.bn1
self.relu = resnet50.relu
self.maxpool = resnet50.maxpool
self.layer1 = resnet50.layer1
self.layer2 = resnet50.layer2
self.layer3 = resnet50.layer3
self.layer4 = resnet50.layer4
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
self.se1 = SEModule(256)
self.se2 = SEModule(512)
self.se3 = SEModule(1024)
self.se4 = SEModule(2048)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.se1(x)
x = self.layer2(x)
x = self.se2(x)
x = self.layer3(x)
x = self.se3(x)
x = self.layer4(x)
x = self.se4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
通过以上方法,在ResNet50中加入SE模块,可以提高模型的性能和精度。
阅读全文