哈夫曼编码的压缩与解压缩

时间: 2023-10-22 17:25:18 浏览: 40
哈夫曼编码是一种基于字符出现频率的压缩算法,它将出现频率高的字符用短的编码表示,出现频率低的字符用长的编码表示,从而达到压缩文本的目的。压缩时,将原始文本按字符出现频率构建哈夫曼树,并根据哈夫曼树生成每个字符的哈夫曼编码,将编码后的文本存储到文件中。解压时,读取压缩文件中的编码,根据哈夫曼树将编码还原为原始文本。 具体的压缩过程如下: 1. 统计原始文本中每个字符出现的频率。 2. 根据频率构建哈夫曼树,出现频率高的字符离根节点近,出现频率低的字符离根节点远。 3. 从根节点开始,向左走表示“0”,向右走表示“1”,递归遍历哈夫曼树,生成每个字符的哈夫曼编码。 4. 将编码后的文本按位存储到文件中,每8位组成一个字节,存储到二进制文件中。 具体的解压缩过程如下: 1. 读取压缩文件中的编码,按位(bit)读取,遍历哈夫曼树,将编码还原为原始文本。 2. 将还原后的文本存储到文件中。 需要注意的是,压缩时需要将哈夫曼树的结构也存储到文件中,以便解压缩时重建哈夫曼树。此外,由于哈夫曼编码不是固定长度的,因此压缩后的文件大小并不确定,可能会比原始文本大,这是因为压缩文件中还需要存储哈夫曼树的结构和一些额外信息。
相关问题

哈夫曼编码压缩解压缩c语言代码

以下是哈夫曼编码压缩解压缩的C语言代码示例: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_TREE_HT 100 struct MinHeapNode { char data; unsigned freq; struct MinHeapNode *left, *right; }; struct MinHeap { unsigned size; unsigned capacity; struct MinHeapNode** array; }; struct MinHeapNode* newNode(char data, unsigned freq) { struct MinHeapNode* temp = (struct MinHeapNode*)malloc(sizeof(struct MinHeapNode)); temp->left = temp->right = NULL; temp->data = data; temp->freq = freq; return temp; } struct MinHeap* createMinHeap(unsigned capacity) { struct MinHeap* minHeap = (struct MinHeap*)malloc(sizeof(struct MinHeap)); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = (struct MinHeapNode**)malloc(minHeap->capacity * sizeof(struct MinHeapNode*)); return minHeap; } void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } void minHeapify(struct MinHeap* minHeap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->freq < minHeap->array[smallest]->freq) smallest = left; if (right < minHeap->size && minHeap->array[right]->freq < minHeap->array[smallest]->freq) smallest = right; if (smallest != idx) { swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } int isSizeOne(struct MinHeap* minHeap) { return (minHeap->size == 1); } struct MinHeapNode* extractMin(struct MinHeap* minHeap) { struct MinHeapNode* temp = minHeap->array[0]; minHeap->array[0] = minHeap->array[minHeap->size - 1]; --minHeap->size; minHeapify(minHeap, 0); return temp; } void insertMinHeap(struct MinHeap* minHeap, struct MinHeapNode* minHeapNode) { ++minHeap->size; int i = minHeap->size - 1; while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) { minHeap->array[i] = minHeap->array[(i - 1) / 2]; i = (i - 1) / 2; } minHeap->array[i] = minHeapNode; } void buildMinHeap(struct MinHeap* minHeap) { int n = minHeap->size - 1; int i; for (i = (n - 1) / 2; i >= 0; --i) minHeapify(minHeap, i); } void printArr(int arr[], int n) { int i; for (i = 0; i < n; ++i) printf("%d", arr[i]); printf("\n"); } int isLeaf(struct MinHeapNode* root) { return !(root->left) && !(root->right); } struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size) { struct MinHeap* minHeap = createMinHeap(size); for (int i = 0; i < size; ++i) minHeap->array[i] = newNode(data[i], freq[i]); minHeap->size = size; buildMinHeap(minHeap); return minHeap; } struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size) { struct MinHeapNode *left, *right, *top; struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size); while (!isSizeOne(minHeap)) { left = extractMin(minHeap); right = extractMin(minHeap); top = newNode('$', left->freq + right->freq); top->left = left; top->right = right; insertMinHeap(minHeap, top); } return extractMin(minHeap); } void printCodes(struct MinHeapNode* root, int arr[], int top) { if (root->left) { arr[top] = 0; printCodes(root->left, arr, top + 1); } if (root->right) { arr[top] = 1; printCodes(root->right, arr, top + 1); } if (isLeaf(root)) { printf("%c: ", root->data); printArr(arr, top); } } void HuffmanCodes(char data[], int freq[], int size) { struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); } void compress(char* inputFilePath, char* outputFilePath) { FILE* inputFile = fopen(inputFilePath, "rb"); if (!inputFile) { printf("Error: Could not open file %s.\n", inputFilePath); return; } fseek(inputFile, 0, SEEK_END); unsigned long inputSize = ftell(inputFile); fseek(inputFile, 0, SEEK_SET); char* inputData = (char*)malloc(inputSize); fread(inputData, 1, inputSize, inputFile); fclose(inputFile); int freq[256] = { 0 }; for (int i = 0; i < inputSize; ++i) ++freq[inputData[i]]; char data[256]; int size = 0; for (int i = 0; i < 256; ++i) { if (freq[i] != 0) { data[size] = (char)i; ++size; } } HuffmanCodes(data, freq, size); FILE* outputFile = fopen(outputFilePath, "wb"); if (!outputFile) { printf("Error: Could not create file %s.\n", outputFilePath); return; } struct MinHeapNode* root = buildHuffmanTree(data, freq, size); int arr[MAX_TREE_HT], top = 0; printCodes(root, arr, top); fwrite(&size, sizeof(size), 1, outputFile); for (int i = 0; i < size; ++i) { fwrite(&data[i], sizeof(data[i]), 1, outputFile); fwrite(&freq[(unsigned char)data[i]], sizeof(freq[(unsigned char)data[i]]), 1, outputFile); } int bitIndex = 0; char byte = 0; for (int i = 0; i < inputSize; ++i) { int arrIndex = 0; struct MinHeapNode* node = root; while (inputData[i] != node->data) { if (inputData[i] < node->data) node = node->left; else node = node->right; arrIndex++; } for (int j = 0; j < arrIndex; ++j) { byte |= ((arr[j] << (bitIndex % 8)) & (1 << (bitIndex % 8))); ++bitIndex; if (bitIndex % 8 == 0) { fwrite(&byte, sizeof(byte), 1, outputFile); byte = 0; } } } if (bitIndex % 8 != 0) fwrite(&byte, sizeof(byte), 1, outputFile); fclose(outputFile); printf("Compression complete. Original size: %lu bytes. Compressed size: %ld bytes.\n", inputSize, ftell(outputFile)); } void decompress(char* inputFilePath, char* outputFilePath) { FILE* inputFile = fopen(inputFilePath, "rb"); if (!inputFile) { printf("Error: Could not open file %s.\n", inputFilePath); return; } int size; fread(&size, sizeof(size), 1, inputFile); char data[256]; int freq[256]; for (int i = 0; i < size; ++i) { fread(&data[i], sizeof(data[i]), 1, inputFile); fread(&freq[(unsigned char)data[i]], sizeof(freq[(unsigned char)data[i]]), 1, inputFile); } struct MinHeapNode* root = buildHuffmanTree(data, freq, size); FILE* outputFile = fopen(outputFilePath, "wb"); if (!outputFile) { printf("Error: Could not create file %s.\n", outputFilePath); return; } unsigned long outputSize = 0; int bitIndex = 0; char byte = 0; struct MinHeapNode* node = root; while (1) { int bit = fgetc(inputFile); if (bit == EOF) break; for (int i = 0; i < 8; ++i) { if (bit & (1 << i)) node = node->right; else node = node->left; if (isLeaf(node)) { fwrite(&node->data, sizeof(node->data), 1, outputFile); outputSize += sizeof(node->data); node = root; } } } fclose(inputFile); fclose(outputFile); printf("Decompression complete. Original size: %d bytes. Decompressed size: %lu bytes.\n", size, outputSize); } int main() { char inputFilePath[] = "input.txt"; char compressedFilePath[] = "compressed.bin"; char decompressedFilePath[] = "decompressed.txt"; compress(inputFilePath, compressedFilePath); decompress(compressedFilePath, decompressedFilePath); return 0; } ``` 该示例包括哈夫曼树的构建、编码、压缩和解码、解压缩等功能。其中,compress函数将输入文件进行压缩,并将压缩结果写入到输出文件中;decompress函数将压缩文件进行解压缩,并将解压缩结果写入到输出文件中。

简单哈夫曼编码的压缩与解压缩c++

### 回答1: 简单哈夫曼编码是一种基于字符频率的无损压缩算法。其压缩过程主要包括两个步骤:建立编码表和将原文本按编码表进行编码。解压缩则是对编码后的数据进行解码,还原为原始文本。 在建立编码表的步骤中,首先需要统计原文本中每个字符的频率,并按频率进行排序。然后从频率最低的两个字符开始,不断合并形成新的节点,直到只剩下一个根节点。这个过程类似于二叉树的构建。在合并节点的过程中,会为每个节点分配一个二进制编码,通过向左走表示编码位0,向右走表示编码位1。最终,所有字符的编码位通过遍历树的路径得到,构成了编码表。 在编码过程中,根据编码表将原文本中的每个字符用相应的二进制编码进行替换。由于编码表保证了每个字符的编码都是唯一的且互不重叠,所以通过替换后的编码所得到的二进制数据长度更短,实现了压缩效果。 解压缩过程中,根据编码表将编码后的二进制数据进行解码。从根节点开始,按照解码规则依次向左或向右移动,直到达到叶节点。到达叶节点后,就可以得到对应的字符。重复此过程,直到解码完所有的二进制数据,就能够得到原始文本。 简单哈夫曼编码的压缩与解压缩过程简单高效,可以有效地减小数据的存储空间,同时不会损失任何信息。然而,它的效果受限于原文本中字符频率的分布情况,如果字符频率分布不均匀,有些字符频率很高,有些频率很低,那么简单哈夫曼编码的压缩效果可能不太明显。 ### 回答2: 简单哈夫曼编码是一种常见的数据压缩算法,它通过对字符出现频率进行统计,然后将频率较高的字符用较短的二进制码表示,频率较低的字符用较长的二进制码表示,从而实现对数据的压缩。 对于压缩,首先需要进行编码。步骤如下: 1. 统计输入的字符频率。 2. 根据字符频率构建哈夫曼树。此时,每个字符都表示一个叶子节点,其权值为字符的频率。 3. 从根节点遍历哈夫曼树,记录路径,将路径上的0和1分别表示为二进制码的0和1。 4. 将编码后的结果写入到输出文件中。 对于解压缩,首先需要进行解码。步骤如下: 1. 读取压缩文件的内容,构建哈夫曼树。 2. 从根节点开始,按照读取到的0和1,依次从哈夫曼树的左右子节点中选择。直到达到叶子节点,将其对应的字符写入解压文件中。 简单哈夫曼编码虽然简单,但是却有一些限制。例如,它无法处理包含大量重复字符的数据,因为在哈夫曼树中,较高频率的字符对应的编码较短,而重复字符的编码会变得很长,导致整体压缩效果不佳。此外,简单哈夫曼编码不支持随机访问,因为解码时需要按顺序读取压缩文件的内容。 尽管存在一些限制,简单哈夫曼编码仍然是一种常用的数据压缩算法,因为它相对简单,且在某些情况下能够获得很好的压缩效果。通过合理的设计编码策略,能够进一步提升压缩效果。 ### 回答3: 哈夫曼编码是一种常用的数据压缩算法,其原理是将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,这样可以实现对数据的有效压缩。 简单哈夫曼编码主要分为两个步骤:构建哈夫曼树和生成编码表。 在压缩过程中,首先需要统计待压缩数据中每个字符的频率,然后根据频率构建哈夫曼树。构建哈夫曼树的过程如下:将所有字符和对应的频率作为叶子节点,然后将频率最小的两个叶子节点合并为一个新的节点,其频率为原来两个节点频率之和;重复进行这个过程,直到只剩下一个根节点为止,此时构建完整的哈夫曼树。 生成编码表的过程如下:从根节点开始,遍历哈夫曼树的每个节点,当到达叶子节点时,记录路径上的编码值。 在解压缩过程中,首先读取压缩文件中的哈夫曼编码表和压缩数据,然后根据哈夫曼编码表重构哈夫曼树。接下来按位读取压缩数据,根据哈夫曼树进行解码,直到解码完所有数据,即可得到原始数据。 简单哈夫曼编码的压缩与解压缩过程可以通过C语言实现。在压缩过程中,可以使用优先队列来实现哈夫曼树的构建,并使用动态字符数组来存储编码表。在解压缩过程中,可以使用位操作来读取压缩数据,并根据哈夫曼树逐位解码。具体实现的细节会涉及到数据结构和文件操作等方面的知识。 总的来说,简单哈夫曼编码通过统计字符频率,并构建哈夫曼树生成编码表,实现对数据的压缩和解压缩。在实际应用中,哈夫曼编码可以大大减小数据的存储空间,提高数据传输的效率。

相关推荐

最新推荐

recommend-type

哈夫曼编码压缩解压缩程序(CPP写的)

哈夫曼编码压缩解压缩程序(CPP写的) 多媒体课程设计中也许能用的到 希望能帮到能用的到的人
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的最佳实践:模型训练、超参数调优与部署优化,打造高性能目标检测系统

![:YOLO目标检测算法的最佳实践:模型训练、超参数调优与部署优化,打造高性能目标检测系统](https://img-blog.csdnimg.cn/20201024153508415.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1NNRjA1MDQ=,size_16,color_FFFFFF,t_70) # 1. YOLO目标检测算法概述 **1.1 YOLO算法简介** YOLO(You Only Look Once)是一种
recommend-type

pecl-memcache-php7 下载

你可以通过以下步骤来下载 pecl-memcache-php7: 1. 打开终端或命令行工具。 2. 输入以下命令:`git clone https://github.com/websupport-sk/pecl-memcache.git` 3. 进入下载的目录:`cd pecl-memcache` 4. 切换到 php7 分支:`git checkout php7` 5. 构建和安装扩展:`phpize && ./configure && make && sudo make install` 注意:在执行第5步之前,你需要确保已经安装了 PHP 和相应的开发工具。
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。