esrgan代码复现pytorch
时间: 2023-10-23 17:09:30 浏览: 282
ESRGAN是一种基于深度学习的图像超分辨率重建方法,可以将低分辨率图像转换为高分辨率图像。以下是ESRGAN的PyTorch代码复现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
class UpsampleBlock(nn.Module):
def __init__(self, in_channels, up_scale):
super(UpsampleBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, stride=1, padding=1)
self.pixel_shuffle = nn.PixelShuffle(up_scale)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = self.conv(x)
out = self.pixel_shuffle(out)
out = self.relu(out)
return out
class Generator(nn.Module):
def __init__(self, scale_factor):
super(Generator, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=9, stride=1, padding=4)
self.relu = nn.ReLU(inplace=True)
self.residual_blocks = nn.Sequential(
ResidualBlock(64),
ResidualBlock(64),
ResidualBlock(64), ResidualBlock(64),
ResidualBlock(64)
)
self.conv2 = nn.Conv2d(64,64, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.upsample_blocks = nn.Sequential(
UpsampleBlock(64, scale_factor),
UpsampleBlock(64, scale_factor),
UpsampleBlock(64, scale_factor)
)
self.conv3 = nn.Conv2d(64, 3, kernel_size=9, stride=1, padding=4)
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
residual = out
out = self.residual_blocks(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.upsample_blocks(out)
out = self.conv3(out)
return out
```
这是一个简单的ESRGAN生成器模型,包含了残差块和上采样块。可以通过调整残差块和上采样块的数量和大小来改进模型的性能。
阅读全文