用tensorflow2.6.0写一段用transformer进行故障分类的代码
时间: 2023-06-06 22:05:34 浏览: 157
抱歉,由于您提到了技术问题,我可以为您提供帮助。以下是一段使用 TensorFlow 2.6.0 实现 Transformer 进行故障分类的代码示例:
```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from transformers import TFDistilBertModel
# 构建 Transformer 模型
class TransformerClassifier(tf.keras.Model):
def __init__(self, num_classes):
super(TransformerClassifier, self).__init__()
self.distilbert = TFDistilBertModel.from_pretrained('distilbert-base-uncased')
self.pre_classifier = layers.Dense(768, activation='relu')
self.classifier = layers.Dense(num_classes, activation='softmax')
def call(self, inputs):
_, pooled_output = self.distilbert(inputs)
pooled_output = self.pre_classifier(pooled_output)
output = self.classifier(pooled_output)
return output
# 加载数据
(train_texts, train_labels), (test_texts, test_labels) = keras.datasets.imdb.load_data()
# 数据预处理
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
# 构建模型并训练
model = TransformerClassifier(num_classes=2)
optimizer = keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_encodings['input_ids'], train_labels, epochs=3, batch_size=32, validation_data=(test_encodings['input_ids'], test_labels))
```
上述代码中,我们使用了 Hugging Face 的 Transformers 库来加载 DistilBERT 预训练模型,并在此基础上构建了一个 Transformer 分类器模型。在数据预处理阶段,我们使用了 DistilBERT 的 tokenizer 对文本进行编码。最后,我们使用 Tensorflow 的内置优化器来训练模型,并输出了最终的模型性能指标。
阅读全文