python如何实现先使用结巴分词,然后使用正则表达式过滤掉非中文字符的同时保留指定集合的英文词
时间: 2024-03-27 18:39:42 浏览: 51
可以使用Python中的re模块和jieba分词库来实现。具体步骤如下:
1. 导入必要的库:
```python
import re
import jieba
```
2. 对文本进行分词:
```python
text = "这是一个中文文本,Hello World!"
words = jieba.cut(text)
```
3. 过滤非中文字符和非指定集合的英文词:
```python
pattern = re.compile(r'[\u4e00-\u9fa5]+|[a-zA-Z]+')
english_words = {'hello', 'world'} # 指定的英文词集合
filtered_words = []
for word in words:
if re.match(pattern, word):
if word.isalpha() and word.lower() not in english_words:
continue
filtered_words.append(word)
```
4. 将过滤后的词列表转换为字符串:
```python
filtered_text = ' '.join(filtered_words)
```
最终得到的filtered_text就是经过结巴分词、过滤非中文字符和非指定集合的英文词后的文本。
相关问题
python中利用结巴分词后如何将所有非中文字符过滤出来
你可以使用正则表达式来过滤出所有非中文字符,具体代码如下:
```python
import re
import jieba
text = "这是一段中文文本,Hello World!"
words = jieba.cut(text)
# 正则表达式匹配非中文字符
non_chinese_pattern = re.compile(r'[^\u4e00-\u9fa5]')
# 过滤出所有非中文字符
non_chinese_chars = [char for char in ''.join(words) if non_chinese_pattern.match(char)]
print(non_chinese_chars) # [' ', 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '!']
```
在这个例子中,我们首先使用结巴分词库对文本进行分词,然后使用一个正则表达式来匹配非中文字符,最后通过列表推导式将所有非中文字符过滤出来。
python中利用结巴分词后如何只保留中文字符
你可以使用正则表达式来过滤出所有中文字符,具体代码如下:
```python
import re
import jieba
text = "这是一段中文文本,Hello World!"
words = jieba.cut(text)
# 正则表达式匹配中文字符
chinese_pattern = re.compile(r'[\u4e00-\u9fa5]')
# 过滤出所有中文字符
chinese_chars = [char for char in ''.join(words) if chinese_pattern.match(char)]
print(chinese_chars) # ['这', '是', '一', '段', '中', '文', '文', '本']
```
在这个例子中,我们首先使用结巴分词库对文本进行分词,然后使用一个正则表达式来匹配中文字符,最后通过列表推导式将所有中文字符保留下来。
阅读全文
相关推荐















