写一个运用ResNet算法实现图片分类的深度学习代码
时间: 2024-05-14 15:19:02 浏览: 79
好的,以下是使用ResNet算法进行图像分类的深度学习代码,使用的是Python和TensorFlow框架:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义ResNet模块
def resnet_block(inputs, num_filters, kernel_size, strides, activation='relu'):
x = layers.Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = layers.BatchNormalization()(x)
if activation:
x = layers.Activation(activation)(x)
x = layers.Conv2D(num_filters, kernel_size=kernel_size, strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
if activation:
x = layers.Activation(activation)(x)
if strides > 1:
inputs = layers.Conv2D(num_filters, kernel_size=1, strides=strides, padding='same')(inputs)
inputs = layers.BatchNormalization()(inputs)
x = layers.Add()([x, inputs])
if activation:
x = layers.Activation(activation)(x)
return x
# 定义ResNet网络结构
def resnet(input_shape, num_classes):
inputs = layers.Input(shape=input_shape)
x = layers.Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
num_filters = 64
kernel_size = 3
block_sizes = [2, 2, 2, 2]
for i, size in enumerate(block_sizes):
num_filters *= 2
strides = 1 if i == 0 else 2
x = resnet_block(x, num_filters, kernel_size, strides)
for j in range(size - 1):
x = resnet_block(x, num_filters, kernel_size, 1)
x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
model = tf.keras.Model(inputs, outputs)
return model
# 加载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train / 255.0
x_test = x_test / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
# 构建模型
model = resnet((32, 32, 3), 10)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32, validation_data=(x_test, y_test))
```
以上代码实现了一个包含四个ResNet模块的ResNet网络,并使用CIFAR-10数据集进行训练和测试。你可以根据自己的需求修改模型结构和训练参数。
阅读全文