nova_libvirt怎么创建

时间: 2023-11-17 15:51:17 浏览: 46
要使用nova_libvirt创建虚拟机,你需要满足一定的要求。首先,你需要安装libvirt和QEMU,并且确保它们的版本符合Juno版本的要求。其次,你需要使用libvirt-python来与libvirt进行交互。然后,你可以使用nova/virt/libvirt/utils.py中的fetch_image方法来获取镜像并创建虚拟机。
相关问题

qpid架构图和nova服务进程图

qpid架构图是指用来描述Qpid消息代理系统的整体结构和组件之间的关系的图示。Qpid是一个实现了Advanced Message Queuing Protocol(AMQP)标准的开源消息代理系统,用于在分布式系统中进行可靠的消息传递和通信。Qpid架构图通常会包括以下几个主要组件: 1. Qpid Broker:消息代理,负责接收、路由和传递消息。它包含了Exchange、Queue、Binding等基本概念,并通过AMQP协议与其他组件进行通信。 2. Qpid Client:客户端,用于产生、发送和接收消息。它可以是生产者或消费者,与Qpid Broker建立连接,在不同的Exchange或Queue之间发送和接收消息。 3. Qpid Management Tools:用于管理和监控Qpid系统的工具。可以通过这些工具进行交互,查看和管理Broker和Client的状态、配置和性能信息等。 4. Qpid Routing功能:实现了消息的路由和转发功能,根据Exchange和Binding的配置,将消息从生产者传递到消费者。 5. Qpid 持久化存储:将消息保存到硬盘上,以便在系统故障后能够恢复消息的可靠性。 Nova服务进程图是指用来描述OpenStack中的Nova服务的组件和模块之间的关系的图示。Nova是OpenStack中的计算服务,负责管理和调度云中的虚拟机实例。Nova服务进程图包括以下几个主要组件: 1. Nova-api服务:接受来自用户和其他服务的Restful API请求,并将其转发给其他具体的服务进程进行处理。它与客户端之间通过API接口进行通信。 2. Nova-scheduler服务:负责虚拟机实例的调度和分配。根据云中的物理资源情况和调度策略,选择最合适的物理主机来部署虚拟机实例。 3. Nova-conductor服务:负责处理用户操作的审批和授权。它与数据库交互,管理虚拟机实例的状态和操作。 4. Nova-compute服务:管理和监控物理主机上运行的虚拟机实例。它与虚拟化技术(如KVM、Xen等)进行交互,通过控制接口(libvirt)管理虚拟机的创建、启动、停止和删除等操作。 5. Nova-network服务:提供虚拟网络的管理和配置。负责为虚拟机实例分配IP地址、创建网络拓扑等网络相关的操作。 6. Nova-volume服务:提供块存储服务,为虚拟机实例挂载块设备。 以上是对qpid架构图和nova服务进程图的简要描述,这些图示有助于理解系统的整体结构和组件的交互关系。

(1) OpenStack nova组件构成及其作用 (2)libvirt作用是什么? (3)如何部署rabbitmq (4)rabbitmq的五种消息使用方法是什么?代码如何测试 (5)rabbitmq 如何与 spring boot 集成

(1)OpenStack nova是一个用于管理云计算平台上虚拟机实例的组件,主要由以下几个子组件构成: - nova-api:提供REST API接口,用于接收和处理用户请求。 - nova-scheduler:根据用户请求,选择最适合的物理主机进行虚拟机实例的创建。 - nova-conductor:协助nova-compute进行虚拟机实例的创建和管理。 - nova-compute:在物理主机上创建和管理虚拟机实例。 - nova-network:提供虚拟机实例的网络连接和管理功能。 (2)libvirt是一个用于管理虚拟化技术的工具,它提供了一组API接口,可以让管理程序通过这些接口来管理虚拟化环境。它主要的作用有: - 提供了一套统一的API,可以管理多种虚拟化技术。 - 可以创建、启动、停止、暂停、恢复、删除虚拟机。 - 可以管理虚拟机的磁盘、网络、内存、CPU等资源。 - 提供了一些监控和调试工具,方便管理人员进行故障排查和性能调优。 (3)部署rabbitmq的步骤如下: 1. 安装Erlang环境 2. 安装RabbitMQ服务 3. 启动RabbitMQ服务 4. 配置管理员用户和虚拟主机 5. 配置RabbitMQ的权限和策略 6. 配置集群和镜像队列 (4)RabbitMQ的五种消息使用方法及测试代码如下: - Point-to-Point (PTP)模式 发送消息的代码: ```python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() ``` 接收消息的代码: ```python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming() ``` - Publish/Subscribe模式 发送消息的代码: ```python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs', exchange_type='fanout') message = 'Hello World!' channel.basic_publish(exchange='logs', routing_key='', body=message) print(" [x] Sent %r" % message) connection.close() ``` 接收消息的代码: ```python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.exchange_declare(exchange='logs', exchange_type='fanout') result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue channel.queue_bind(exchange='logs', queue=queue_name) def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(queue=queue_name, on_message_callback=callback, auto_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming() ``` - Routing模式 发送消息的代码: ```python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.exchange_declare(exchange='direct_logs', exchange_type='direct') severity = sys.argv[1] if len(sys.argv) > 1 else 'info' message = ' '.join(sys.argv[2:]) or 'Hello World!' channel.basic_publish(exchange='direct_logs', routing_key=severity, body=message) print(" [x] Sent %r:%r" % (severity, message)) connection.close() ``` 接收消息的代码: ```python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.exchange_declare(exchange='direct_logs', exchange_type='direct') result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue severities = sys.argv[1:] if not severities: print("Usage: %s [info] [warning] [error]" % (sys.argv[0],)) sys.exit(1) for severity in severities: channel.queue_bind(exchange='direct_logs', queue=queue_name, routing_key=severity) def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(queue=queue_name, on_message_callback=callback, auto_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming() ``` - Topic模式 发送消息的代码: ```python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.exchange_declare(exchange='topic_logs', exchange_type='topic') routing_key = sys.argv[1] if len(sys.argv) > 2 else 'anonymous.info' message = ' '.join(sys.argv[2:]) or 'Hello World!' channel.basic_publish(exchange='topic_logs', routing_key=routing_key, body=message) print(" [x] Sent %r:%r" % (routing_key, message)) connection.close() ``` 接收消息的代码: ```python import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.exchange_declare(exchange='topic_logs', exchange_type='topic') result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue binding_keys = sys.argv[1:] if not binding_keys: print("Usage: %s [binding_key]..." % (sys.argv[0],)) sys.exit(1) for binding_key in binding_keys: channel.queue_bind(exchange='topic_logs', queue=queue_name, routing_key=binding_key) def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(queue=queue_name, on_message_callback=callback, auto_ack=True) print(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming() ``` - RPC模式 客户端发送请求的代码: ```python import pika import uuid class FibonacciRpcClient(object): def __init__(self): self.connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) self.channel = self.connection.channel() result = self.channel.queue_declare(queue='', exclusive=True) self.callback_queue = result.method.queue self.channel.basic_consume(queue=self.callback_queue, on_message_callback=self.on_response, auto_ack=True) def on_response(self, ch, method, props, body): if self.correlation_id == props.correlation_id: self.response = body def call(self, n): self.response = None self.correlation_id = str(uuid.uuid4()) self.channel.basic_publish(exchange='', routing_key='rpc_queue', properties=pika.BasicProperties( reply_to=self.callback_queue, correlation_id=self.correlation_id, ), body=str(n)) while self.response is None: self.connection.process_data_events() return int(self.response) fibonacci_rpc = FibonacciRpcClient() print(" [x] Requesting fib(30)") response = fibonacci_rpc.call(30) print(" [.] Got %r" % response) ``` 服务端处理请求的代码: ```python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='rpc_queue') def fib(n): if n == 0: return 0 elif n == 1: return 1 else: return fib(n-1) + fib(n-2) def on_request(ch, method, props, body): n = int(body) print(" [.] fib(%s)" % n) response = fib(n) ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id = props.correlation_id), body=str(response)) ch.basic_ack(delivery_tag=method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(queue='rpc_queue', on_message_callback=on_request) print(" [x] Awaiting RPC requests") channel.start_consuming() ``` (5)RabbitMQ与Spring Boot集成的步骤如下: 1. 添加RabbitMQ依赖 在pom.xml文件中添加以下依赖: ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency> ``` 2. 配置RabbitMQ连接 在application.properties文件中添加以下配置: ``` spring.rabbitmq.host=localhost spring.rabbitmq.port=5672 spring.rabbitmq.username=guest spring.rabbitmq.password=guest ``` 3. 发送消息 ```java import org.springframework.amqp.rabbit.core.RabbitTemplate; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; @Component public class Sender { private final RabbitTemplate rabbitTemplate; @Autowired public Sender(RabbitTemplate rabbitTemplate) { this.rabbitTemplate = rabbitTemplate; } public void send(String message) { rabbitTemplate.convertAndSend("hello", message); } } ``` 4. 接收消息 ```java import org.springframework.amqp.rabbit.annotation.RabbitListener; import org.springframework.stereotype.Component; @Component public class Receiver { @RabbitListener(queues = "hello") public void receive(String message) { System.out.println("Received: " + message); } } ```

相关推荐

zip
基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩