token = self.tokenizer(text, return_tensors="pt"),return_tensor="pt"是什么
时间: 2023-06-08 10:03:33 浏览: 257
意思?
return_tensors="pt"是一个参数,用于指示将令牌化后的输入文本返回为PyTorch张量(Tensor),而不仅仅是字符串形式的令牌序列。它使得文本数据可以直接输入到PyTorch模型中进行处理。
相关问题
import torch from transformers import BertTokenizer, BertForQuestionAnswering 加载BERT预训练模型和分词器 model_name = 'bert-base-chinese' # 中文预训练模型 tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) 输入文本和问题 context = "我叫river,我在深圳上班。" question = "我是谁?" 对文本和问题进行分词和编码 inputs = tokenizer.encode_plus(question, context, add_special_tokens=True, return_tensors='pt') input_ids = inputs['input_ids'].tolist()[0] token_type_ids = inputs['token_type_ids'].tolist()[0] input_ids=torch.tensor([input_ids],dtype=torch.long) token_type_ids=torch.tensor([token_type_ids],dtype=torch.long) 使用BERT模型进行问答 start_scores, end_scores = model(input_ids=input_ids, token_type_ids=token_type_ids) 为什么strat_scores是str型的而不是tensor型的
根据您提供的代码,`start_scores` 应该是一个张量类型的对象,而不是字符串类型。如果您在打印 `start_scores` 的类型时得到了字符串类型的结果,可能是由于模型加载或处理的问题。
以下是一些可能导致 `start_scores` 类型不正确的原因和解决方法:
1. 检查模型是否成功加载:确保通过 `BertForQuestionAnswering.from_pretrained(model_name)` 成功加载了预训练模型。如果模型加载失败,可能会导致输出结果不正确。
2. 检查模型输入:确保将输入正确传递给模型。您可以使用 `print(input_ids.size(), token_type_ids.size())` 来检查输入张量的形状。确保 `input_ids` 和 `token_type_ids` 的形状符合预期。
3. 检查模型输出:在调用模型后,确保 `start_scores` 的类型是张量。您可以使用 `print(type(start_scores))` 来打印 `start_scores` 的类型。
如果问题仍然存在,请提供完整的错误信息和相关的代码细节,以便我能够更好地帮助您解决问题。
import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) # 计算当前微博词汇与种子词的相似度 sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max() print(sim, word) if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) 上述代码运行之后有错误,报错信息为:Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/newsim.py", line 397, in <module> seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) IndexError: index 3 is out of bounds for dimension 0 with size 3. 请帮我修改
根据报错信息,问题出在获取seed_encoded_layers的第三个元素时,超过了张量的维度范围。可以通过打印输出seed_encoded_layers的形状,来确定张量的维度情况,看看是否与预期一致。
同时,可以检查一下seed_tokens和seed_token_ids的值,确保它们正确。
下面是修改后的代码:
```
import jieba
import torch
from sklearn.metrics.pairwise import cosine_similarity
from transformers import BertTokenizer, BertModel
seed_words = ['姓名']
# 加载微博文本数据
text_data = []
with open("output/weibo1.txt", "r", encoding="utf-8") as f:
for line in f:
text_data.append(line.strip())
# 加载BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')
seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"]
seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens)
seed_segment_ids = [0] * len(seed_token_ids)
# 转换为张量,调用BERT模型进行编码
seed_token_tensor = torch.tensor([seed_token_ids])
seed_segment_tensor = torch.tensor([seed_segment_ids])
with torch.no_grad():
seed_outputs = model(seed_token_tensor, seed_segment_tensor)
seed_encoded_layers = seed_outputs[0]
jieba.load_userdict('data/userdict.txt')
# 构建隐私词库
privacy_words = set()
for text in text_data:
words = jieba.lcut(text.strip())
tokens = ["[CLS]"] + words + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * len(token_ids)
# 转换为张量,调用BERT模型进行编码
token_tensor = torch.tensor([token_ids])
segment_tensor = torch.tensor([segment_ids])
with torch.no_grad():
outputs = model(token_tensor, segment_tensor)
encoded_layers = outputs[0]
# 对于每个词,计算它与种子词的相似度
for i in range(1, len(tokens)-1):
word = tokens[i]
if word in seed_words:
continue
word_tensor = encoded_layers[0][i].reshape(1, -1)
seed_tensors = seed_encoded_layers[0][0].reshape(1, -1) # 修改此处,取第一个元素
# 计算当前微博词汇与种子词的相似度
sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max()
print(sim, word)
if sim > 0.5 and len(word) > 1:
privacy_words.add(word)
print(privacy_words)
```
阅读全文