python中怎么按照KNN
时间: 2024-10-19 07:16:16 浏览: 19
在Python中,K近邻算法(K-Nearest Neighbors, KNN)通常通过`sklearn`库中的`KNeighborsClassifier`或`KNeighborsRegressor`来实现。以下是基本步骤:
1. **导入所需库**:
```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```
2. **数据预处理**:
- 分割特征和目标变量
- 标准化数据(如果需要),因为KNN对输入值范围敏感:
```python
X = ... # 特征数据
y = ... # 目标标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
3. **创建并训练模型**:
```python
k = 5 # 指定邻居数
knn_model = KNeighborsClassifier(n_neighbors=k)
knn_model.fit(X_train, y_train)
```
4. **预测**:
```python
predictions = knn_model.predict(X_test)
```
5. **评估模型性能**:
```python
from sklearn.metrics import accuracy_score, classification_report
print("Accuracy:", accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
```
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)