glove文本分类中文微博评论python代码
时间: 2023-08-10 20:06:04 浏览: 194
基于jieba、gensim.word2vec、LogisticRegression的搜狐新闻文本分类-附件资源
以下是使用Python实现基于GloVe的中文微博评论文本分类的示例代码,其中使用了gensim库和jieba库:
```python
import jieba
import numpy as np
from gensim.models import KeyedVectors
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding, LSTM
# 准备中文微博评论数据集,这里用的是一个文本文件
data = []
labels = []
with open('weibo_comments.txt', 'r', encoding='utf-8') as f:
for line in f:
# 每一行数据包括评论和标签,用空格分隔
label, comment = line.strip().split(' ')
data.append(comment)
labels.append(label)
# 对标签进行编码
label_encoder = LabelEncoder()
labels = label_encoder.fit_transform(labels)
# 对微博评论进行分词
sentences = []
for comment in data:
words = list(jieba.cut(comment))
sentences.append(words)
# 加载预训练好的GloVe词向量
word_vectors = KeyedVectors.load_word2vec_format('glove.word2vec.txt', binary=False)
# 将分好词的微博评论转换为词向量序列
embedding_size = 100
max_sequence_length = 100
embedding_matrix = np.zeros((len(word_vectors.vocab), embedding_size))
for i, word in enumerate(word_vectors.index2word):
if i >= len(word_vectors.vocab):
break
embedding_vector = word_vectors[word]
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
data_sequences = []
for sentence in sentences:
sequence = []
for word in sentence:
if word in word_vectors.vocab:
sequence.append(word_vectors.vocab[word].index)
data_sequences.append(sequence)
# 对词向量序列进行padding,使其长度相同
data_sequences = pad_sequences(data_sequences, maxlen=max_sequence_length)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data_sequences, labels, test_size=0.2, random_state=42)
# 构建模型
model = Sequential()
model.add(Embedding(len(word_vectors.vocab), embedding_size, weights=[embedding_matrix], input_length=max_sequence_length, trainable=False))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
batch_size = 32
epochs = 10
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_test, y_test))
# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
```
在上述代码中,我们使用`jieba`对微博评论进行分词,并使用预训练好的GloVe词向量将分好词的微博评论转换为词向量序列。然后,我们使用Keras构建一个LSTM模型,并使用训练集对模型进行训练。最后,我们使用测试集对模型进行评估。需要注意的是,这里的示例中只是简单地使用了一个文本文件作为数据集,实际应用中需要使用更大的数据集进行训练和测试。
阅读全文