L1正则化和L2正则化的区别
时间: 2023-08-10 15:05:52 浏览: 175
【一看就懂】机器学习之L1和L2正则化1
L1正则化和L2正则化是常用的正则化技术,它们在机器学习中用于减少模型的过拟合风险,但它们的惩罚项有一些差异。
以下是L1正则化和L2正则化的主要区别:
1. 惩罚项形式:
- L1正则化使用L1范数作为惩罚项,即将权重向量中各个维度上的绝对值之和作为惩罚项。L1范数在某些情况下可以实现特征选择,即将某些特征的权重调整为0。
- L2正则化使用L2范数作为惩罚项,即将权重向量中各个维度上的平方之和的平方根作为惩罚项。L2范数在整体上对权重进行约束,并且对所有维度的权重都进行了惩罚。
2. 影响方式:
- L1正则化倾向于产生稀疏权重向量,即使得一部分特征的权重为0,从而实现特征选择。这是因为L1范数的几何特性使得等值线与坐标轴相交,从而鼓励模型将一些不重要或冗余的特征的权重调整为0。
- L2正则化倾向于将权重分散在各个维度上,但不会将权重严格调整为0,因此不会进行特征选择。L2正则化通过使权重向量更加均衡,减少了不同维度上权重的差异性。
3. 解的唯一性:
- L1正则化可能导致解的稀疏性,即存在多个具有相同损失函数值的解。这是因为L1范数在原点处有角,使得等值线与坐标轴相交。
- L2正则化不会导致解的稀疏性,因为L2范数的等值线为圆形,不会与坐标轴相交,从而保证了解的唯一性。
总结来说,L1正则化和L2正则化在惩罚项形式、影响方式和解的唯一性等方面存在差异。在应用中,你可以根据具体问题和需求选择适合的正则化方法。
希望这个回答对你有帮助,如果还有其他问题,请随时提问!
阅读全文