基于yolov7的安全帽佩戴检测系统
时间: 2024-01-01 07:02:30 浏览: 208
智慧工地基于yolov7实现安全帽佩戴识别检测源码+训练好模型+配置文件+评估指标曲线.zip
5星 · 资源好评率100%
基于YOLOv7的安全帽佩戴检测系统是一种利用先进的深度学习技术,旨在自动识别工地等危险环境中工人是否佩戴安全帽的系统。通过该系统,摄像头可以实时监测工地情况,并自动识别出未佩戴安全帽的工人,及时提醒或报警,以减少意外伤害的发生。
该系统采用YOLOv7算法,能够高效快速地识别图像或视频中的人头和安全帽,并通过实时检测算法实现对安全帽佩戴情况的准确判断。同时,该系统还可以进行实时计数和统计,以便管理人员对工地安全情况进行有效监控和管理。
借助基于YOLOv7的安全帽佩戴检测系统,企业和工地管理方可以实现对员工的安全帽佩戴情况进行实时监管,提高工地作业人员的安全意识;同时可以提高工地管理的效率和精度,有助于降低事故率,保障工人的生命安全。通过系统提供的数据统计和分析,还可以帮助管理方了解工地安全帽佩戴情况的趋势和规律,及时调整管理策略,提升工地的整体安全水平。
总的来说,基于YOLOv7的安全帽佩戴检测系统具有广阔的应用前景,不仅可以有效提升工地安全管理水平,还可以为企业节省人力和成本,实现智能化和自动化管理。
阅读全文